Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Neuroevolution Application To Collaborative And Heuristics-Based Connected And Autonomous Vehicle Cohort Simulation At Uncontrolled Intersection, Frederic Jacquelin, Jungyun Bae, Bo Chen, Darrell Robinette Jun 2023

Neuroevolution Application To Collaborative And Heuristics-Based Connected And Autonomous Vehicle Cohort Simulation At Uncontrolled Intersection, Frederic Jacquelin, Jungyun Bae, Bo Chen, Darrell Robinette

Michigan Tech Publications, Part 2

Artificial intelligence is gaining tremendous attractiveness and showing great success in solving various problems, such as simplifying optimal control derivation. This work focuses on the application of Neuroevolution to the control of Connected and Autonomous Vehicle (CAV) cohorts operating at uncontrolled intersections. The proposed method implementation’s simplicity, thanks to the inclusion of heuristics and effective real-time performance are demonstrated. The resulting architecture achieves nearly ideal operating conditions in keeping the average speeds close to the speed limit. It achieves twice as high mean speed throughput as a controlled intersection, hence enabling lower travel time and mitigating energy inefficiencies from stop-and-go …


Artificial Emotional Intelligence In Socially Assistive Robots, Hojjat Abdollahi Jan 2023

Artificial Emotional Intelligence In Socially Assistive Robots, Hojjat Abdollahi

Electronic Theses and Dissertations

Artificial Emotional Intelligence (AEI) bridges the gap between humans and machines by demonstrating empathy and affection towards each other. This is achieved by evaluating the emotional state of human users, adapting the machine’s behavior to them, and hence giving an appropriate response to those emotions. AEI is part of a larger field of studies called Affective Computing. Affective computing is the integration of artificial intelligence, psychology, robotics, biometrics, and many more fields of study. The main component in AEI and affective computing is emotion, and how we can utilize emotion to create a more natural and productive relationship between humans …


Special Section Editorial: Artificial Intelligence For Medical Imaging In Clinical Practice, Claudia Mello-Thoms, Karen Drukker, Sian Taylor-Phillips, Khan Iftekharuddin, Marios Gavrielides Jan 2023

Special Section Editorial: Artificial Intelligence For Medical Imaging In Clinical Practice, Claudia Mello-Thoms, Karen Drukker, Sian Taylor-Phillips, Khan Iftekharuddin, Marios Gavrielides

Electrical & Computer Engineering Faculty Publications

This editorial introduces the JMI Special Section on Artificial Intelligence for Medical Imaging in Clinical Practice.


Defending Ai-Based Automatic Modulation Recognition Models Against Adversarial Attacks, Haolin Tang, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Yanxiao Zhao Jan 2023

Defending Ai-Based Automatic Modulation Recognition Models Against Adversarial Attacks, Haolin Tang, Ferhat Ozgur Catak, Murat Kuzlu, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Automatic Modulation Recognition (AMR) is one of the critical steps in the signal processing chain of wireless networks, which can significantly improve communication performance. AMR detects the modulation scheme of the received signal without any prior information. Recently, many Artificial Intelligence (AI) based AMR methods have been proposed, inspired by the considerable progress of AI methods in various fields. On the one hand, AI-based AMR methods can outperform traditional methods in terms of accuracy and efficiency. On the other hand, they are susceptible to new types of cyberattacks, such as model poisoning or adversarial attacks. This paper explores the vulnerabilities …


Neuromorphic Computing Applications In Robotics, Noah Zins Jan 2023

Neuromorphic Computing Applications In Robotics, Noah Zins

Dissertations, Master's Theses and Master's Reports

Deep learning achieves remarkable success through training using massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer from the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationships between events and objects. This learning paradigm is referred to as associative learning. The successful implementation of associative learning imitates self-learning schemes analogous to animals which resolve the challenges of deep learning. Current state-of-the-art implementations of associative memory are limited to simulations with small-scale and offline paradigms. Thus, …