Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding Aug 2020

Structural Organization And Chemical Activity Revealed By New Developments In Single-Molecule Fluorescence And Orientation Imaging, Tianben Ding

McKelvey School of Engineering Theses & Dissertations

Single-molecule (SM) fluorescence and its localization are important and versatile tools for understanding and quantifying dynamical nanoscale behavior of nanoparticles and biological systems. By actively controlling the concentration of fluorescent molecules and precisely localizing individual single molecules, it is possible to overcome the classical diffraction limit and achieve 'super-resolution' with image resolution on the order of 10 nanometers.

Single molecules also can be considered as nanoscale sensors since their fluorescence changes in response to their local nanoenvironment. This dissertation discusses extending this SM approach to resolve heterogeneity and dynamics of nanoscale materials and biophysical structures by using positions and orientations …


Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi Aug 2020

Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi

McKelvey School of Engineering Theses & Dissertations

Single-molecule localization microscopy (SMLM) techniques have become advanced bioanalytical tools by quantifying the positions and orientations of molecules in space and time at the nanoscale. With the noisy and heterogeneous nature of SMLM datasets in mind, we discuss leveraging particle-gradient flow 1) for quantifying the accuracy of localization algorithms with and without ground truth and 2) as a basis for novel, model-driven localization algorithms with empirically robust performance. Using experimental data, we demonstrate that overlapping images of molecules, a typical consequence of densely packed biological structures, cause biases in position estimates and reconstruction artifacts. To minimize such biases, we develop …


Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris Aug 2020

Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris

McKelvey School of Engineering Theses & Dissertations

The fundamental operation of matrix multiplication is ubiquitous across a myriad of disciplines. Yet, the identification of new optimizations for matrix multiplication remains relevant for emerging hardware architectures and heterogeneous systems. Frameworks such as OpenCL enable computation orchestration on existing systems, and its availability using the Intel High Level Synthesis compiler allows users to architect new designs for reconfigurable hardware using C/C++. Using the HARPv2 as a vehicle for exploration, we investigate the utility of several of the most notable matrix multiplication optimizations to better understand the performance portability of OpenCL and the implications for such optimizations on this and …