Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Purdue University

Remote sensing

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

High Wind Alerts: A System Created With Observations From The X-Band Teaching And Research Radar, Lauren Warner Aug 2020

High Wind Alerts: A System Created With Observations From The X-Band Teaching And Research Radar, Lauren Warner

The Journal of Purdue Undergraduate Research

Following the August 13, 2011, Indiana State Fair stage collapse tragedy, caused by a wind gust from an approaching thunderstorm, Purdue University enforced a wind speed restriction of 30 mph (13 m s-1) for tents at outdoor events. During these events, volunteers stand outside with handheld anemometers, measuring and reporting when the wind speeds exceed this limit. In this study, we report testing of a new system to automate high-wind alerts based on observations from a Doppler radar, the X-band Teaching and Research Radar (XTRRA), near Purdue’s campus. XTRRA scans over campus at low elevations approximately every 5 minutes. Using …


Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison Aug 2018

Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Measurement of soil moisture, especially the root zone soil moisture, is important in agriculture, meteorology, and hydrology. Root zone soil moisture is concerned with the first meter down the soil. Active and passive remote sensing methods used today utilizing L-band(1-2GHz) are physically limited to a sensing depth of about 5 cm or less. To remotely sense the soil moisture in the deeper parts of the soil, the frequency should be lowered. Lower frequencies cannot be used in active spaceborne instruments because of their need for larger antennas, radio frequency interference (RFI), and frequency spectrum allocations. Ground-based passive remote sensing using …


Experimental Testing And Validation Of P-Band Bi-Static Remote Sensing Of Soil Moisture In 137-138mhz Range, Xiangyu Qu, Yao-Cheng Lin, James L. Garrison Aug 2016

Experimental Testing And Validation Of P-Band Bi-Static Remote Sensing Of Soil Moisture In 137-138mhz Range, Xiangyu Qu, Yao-Cheng Lin, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Remote sensing using readily available communication signal transmitted by ORBCOMM satellites at very high frequency (VHF) range (137-138MHz) is a promising method for detecting the root zone soil moisture content. The radio wave reflectivity of soil is strongly correlated to soil moisture content. Therefore, if we were able to measure the reflectivity, we might be able to estimate the soil moisture content. In this preliminary study, we analyze direct signal data from the satellites to investigate and verify communication channels in frequency range of interest and their characteristics (bandwidth, pattern, etc.). The analysis of direct signal data is also used …