Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

From Boolean Equalities To Constraints, Sergio Antoy, Michael Hanus Dec 2015

From Boolean Equalities To Constraints, Sergio Antoy, Michael Hanus

Computer Science Faculty Publications and Presentations

Although functional as well as logic languages use equality to discriminate between logically different cases, the operational meaning of equality is different in such languages. Functional languages reduce equational expressions to their Boolean values, True or False, logic languages use unification to check the validity only and fail otherwise. Consequently, the language Curry, which amalgamates functional and logic programming features, offers two kinds of equational expressions so that the programmer has to distinguish between these uses. We show that this distinction can be avoided by providing an analysis and transformation method that automatically selects the appropriate operation. Without this distinction …


A Constraint Language For Static Semantic Analysis Based On Scope Graphs, Hendrik Van Antwerpen, Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth Sep 2015

A Constraint Language For Static Semantic Analysis Based On Scope Graphs, Hendrik Van Antwerpen, Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth

Computer Science Faculty Publications and Presentations

In previous work, we introduced scope graphs as a formalism for describing program binding structure and performing name resolution in an AST-independent way. In this paper, we show how to use scope graphs to build static semantic analyzers. We use constraints extracted from the AST to specify facts about binding, typing, and initialization. We treat name and type resolution as separate building blocks, but our approach can handle language constructs—such as record field access—for which binding and typing are mutually dependent.We also refine and extend our previous scope graph theory to address practical concerns including ambiguity checking and support for …


Evaluation Of Data-Path Topologies For Self-Timed Conditional Statements, Navaneeth Prasannakumar Jamadagni Aug 2015

Evaluation Of Data-Path Topologies For Self-Timed Conditional Statements, Navaneeth Prasannakumar Jamadagni

Dissertations and Theses

This research presents a methodology to evaluate data path topologies that implement a conditional statement for an average-case performance that is better than the worst-case performance. A conditional statement executes one of many alternatives depending on how Boolean conditions evaluate to true or false. Alternatives with simple computations take less time to execute. The self-timed designs can exploit the faster executing alternatives and provide an average-case behavior, where the average depends on the frequency of simple and complex computations, and the difference in the completion times of simple and complex computations. The frequency of simple and complex computations depends on …


Compiling Collapsing Rules In Certain Constructor Systems, Sergio Antoy, Andy Jost Jul 2015

Compiling Collapsing Rules In Certain Constructor Systems, Sergio Antoy, Andy Jost

Computer Science Faculty Publications and Presentations

The implementation of functional logic languages by means of graph rewriting requires a special handling of collapsing rules. Recent advances about the notion of a needed step in some constructor systems offer a new approach to this problem. We present two results: a transformation of a certain class of constructor-based rewrite systems that eliminates collapsing rules, and a rewrite-like relation that takes advantage of the absence of collapsing rules. We formally state and prove the correctness of these results. When used together, these results simplify without any loss of efficiency an implementation of graph rewriting and consequently of functional logic …


Design, Construction, And Utilization Of Physical Vapor Deposition Systems For Medical Sensor Fabrication, Nicholas Sayre, Erik J. Sánchez, Joe Kowalski May 2015

Design, Construction, And Utilization Of Physical Vapor Deposition Systems For Medical Sensor Fabrication, Nicholas Sayre, Erik J. Sánchez, Joe Kowalski

Student Research Symposium

The development of a novel blood glucose sensor is realized through construction of a homemade plasma coating system and utilization of semiconductor manufacturing processes in a small scale cleanroom environment. Photolithography, plasma sputtering, chemical etching and thin film measurement technologies are used in the medical sensor fabrication process. General process flow will be discussed, and system design and the plasma sputtering process will be presented as it is achieved by the system currently under development.


Performance Metrics For Depth-Based Signal Separation Using Deep Vertical Line Arrays, John K. Boyle Mar 2015

Performance Metrics For Depth-Based Signal Separation Using Deep Vertical Line Arrays, John K. Boyle

Dissertations and Theses

Vertical line arrays (VLAs) deployed below the critical depth in the deep ocean can exploit reliable acoustic path (RAP) propagation, which provides low transmission loss (TL) for targets at moderate ranges, and increased TL for distant interferers. However, sound from nearby surface interferers also undergoes RAP propagation, and without horizontal aperture, a VLA cannot separate these interferers from submerged targets. A recent publication by McCargar and Zurk (2013) addressed this issue, presenting a transform-based method for passive, depth-based separation of signals received on deep VLAs based on the depth-dependent modulation caused by the interference between the direct and surface-reflected acoustic …


Prussian Green: A High Rate Capacity Cathode For Potassium Ion Batteries, Prasanna Pradigi, Joseph Thiebes, Mitchell Swan, Gary Goncher, David Evans, Raj Solanki Mar 2015

Prussian Green: A High Rate Capacity Cathode For Potassium Ion Batteries, Prasanna Pradigi, Joseph Thiebes, Mitchell Swan, Gary Goncher, David Evans, Raj Solanki

Physics Faculty Publications and Presentations

The influence of the precursors, namely potassium ferrocyanide and potassium ferricyanide on the particles sizes of Prussian Blue (PB) and Prussian Green (PG), under identical reaction conditions have been investigated. It was found that the particle sizes influence the gravimetric capacity utilization of these materials as cathodes for aqueous potassium (K+ ) ion batteries. The PG particle sizes were on the order of 50-75 nm, whereas PB particles size were on the order of 2-10 microns. The PG cathodes demonstrated a reversible capacity of 121.4 mAhr/g, with a coulombic efficiency of 98.7% compared to PB cathodes which demonstrated 53.8 …


Semi-Modular Delay Model Revisited In Context Of Relative Timing, Hoon Park, Anping He, Marly Roncken, Xiaoyu Song Feb 2015

Semi-Modular Delay Model Revisited In Context Of Relative Timing, Hoon Park, Anping He, Marly Roncken, Xiaoyu Song

Electrical and Computer Engineering Faculty Publications and Presentations

A new definition of semi-modularity to accommodate relative timing constraints in self-timed circuits is presented. While previous definitions ignore such constraints, the new definition takes them into account. The difference on a design solution for a well-known speed-independent circuit implementation of the Muller C element and a set of relative timing constraints that renders the implementation hazard free is illustrated. The old definition produces a false semi-modularity conflict that cannot exist due to the set of imposed constraints. The new definition correctly accepts the solution.