Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Short-Term Versus Long-Term Effects Of Nitrogen Addition And Warming On Ecosystem N Dynamics In A Grass-Dominated Temperate Old Field, Benjamin F. A. Souriol Oct 2023

Short-Term Versus Long-Term Effects Of Nitrogen Addition And Warming On Ecosystem N Dynamics In A Grass-Dominated Temperate Old Field, Benjamin F. A. Souriol

Electronic Thesis and Dissertation Repository

Increased atmospheric nitrogen (N) deposition and climate warming are both anticipated to influence the ecosystem N dynamics of northern temperate ecosystems substantially over the next century. Nevertheless, in field experiments with N addition and warming treatments, temporal scale can play an important role in determining the extent of treatment effects on N dynamics, and it is unclear to what extent the results of short-term studies can be extrapolated to responses over longer time scales. I compared the short-term versus long-term effects of N addition and warming on net N mineralization, N leaching, and N retention in a grass-dominated old field. …


Levels Of Autotrophy And Heterotrophy In Mesophotic Corals Near The End Photic Zone, Amy Carmignani, Veronica Z. Radice, Kathryn M. Mcmahon, Alex I. Holman, Karen Miller, Kliti Grice, Zoe Richards Jan 2023

Levels Of Autotrophy And Heterotrophy In Mesophotic Corals Near The End Photic Zone, Amy Carmignani, Veronica Z. Radice, Kathryn M. Mcmahon, Alex I. Holman, Karen Miller, Kliti Grice, Zoe Richards

Biological Sciences Faculty Publications

Mesophotic corals live at ~30-150 m depth and can sustain metabolic processes under light-limited conditions by enhancing autotrophy through specialized photoadaptations or increasing heterotrophic nutrient acquisition. These acclimatory processes are often species-specific, however mesophotic ecosystems are largely unexplored and acclimation limits for most species are unknown. This study examined mesophotic coral ecosystems using a remotely operated vehicle (Ashmore Reef, Western Australia at 40–75m depth) to investigate the trophic ecology of five species of scleractinian coral (from genera Leptoseris, Pachyseris, and Craterastrea) using stable isotope analyses (δ13C and δ15N) of host and symbiont tissues …