Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology

Old Dominion University

Series

Nitrogen

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Levels Of Autotrophy And Heterotrophy In Mesophotic Corals Near The End Photic Zone, Amy Carmignani, Veronica Z. Radice, Kathryn M. Mcmahon, Alex I. Holman, Karen Miller, Kliti Grice, Zoe Richards Jan 2023

Levels Of Autotrophy And Heterotrophy In Mesophotic Corals Near The End Photic Zone, Amy Carmignani, Veronica Z. Radice, Kathryn M. Mcmahon, Alex I. Holman, Karen Miller, Kliti Grice, Zoe Richards

Biological Sciences Faculty Publications

Mesophotic corals live at ~30-150 m depth and can sustain metabolic processes under light-limited conditions by enhancing autotrophy through specialized photoadaptations or increasing heterotrophic nutrient acquisition. These acclimatory processes are often species-specific, however mesophotic ecosystems are largely unexplored and acclimation limits for most species are unknown. This study examined mesophotic coral ecosystems using a remotely operated vehicle (Ashmore Reef, Western Australia at 40–75m depth) to investigate the trophic ecology of five species of scleractinian coral (from genera Leptoseris, Pachyseris, and Craterastrea) using stable isotope analyses (δ13C and δ15N) of host and symbiont tissues …


Uncoupling Between Dinitrogen Fixation And Primary Productivity In The Eastern Mediterranean Sea, Eyal Rahav, Barak Herut, Noga Stambler, Edo Bar-Zeev, Margaret R. Mulholland Mar 2013

Uncoupling Between Dinitrogen Fixation And Primary Productivity In The Eastern Mediterranean Sea, Eyal Rahav, Barak Herut, Noga Stambler, Edo Bar-Zeev, Margaret R. Mulholland

OES Faculty Publications

In the nitrogen (N)-impoverished photic zones of many oceanic regions, prokaryotic organisms fixing atmospheric dinitrogen (N2; diazotrophs) supply an essential source of new nitrogen and fuel primary production. We measured dinitrogen fixation and primary productivity (PP) during the thermally stratified summer period in different water regimes of the oligotrophic eastern Mediterranean Sea, including the Cyprus Eddy and the Rhodes Gyre. Low N2 fixation rates were measured (0.8-3.2μmol N m-2 d-1) excluding 10-fold higher rates in the Rhodes Gyre and Cyprus Eddy (~20μmol N m-2 d-1). The corresponding PP increased from east to west (200-2500μmol …


Interactions Between Changing Pco2, N2 Fixation, And Fe Limitation In The Marine Unicellular Cyanobacterium Crocosphaera, Fei-Xue Fu, Margaret R. Mulholland, Nathan S. Garcia, Aaron Beck, Mark E. Warner, Sergio A. Sañudo, David A. Hutchins Jan 2008

Interactions Between Changing Pco2, N2 Fixation, And Fe Limitation In The Marine Unicellular Cyanobacterium Crocosphaera, Fei-Xue Fu, Margaret R. Mulholland, Nathan S. Garcia, Aaron Beck, Mark E. Warner, Sergio A. Sañudo, David A. Hutchins

OES Faculty Publications

We examined the physiological responses of steady-state iron (Fe)-replete and Fe-limited cultures of the biogeochemically critical marine unicellular diazotrophic cyanobacterium Crocosphaera at glacial (19 Pa; 190 ppm), current (39 Pa; 380 ppm), and projected year 2100 (76 Pa; 750 ppm) CO2 levels. Rates of N2 and CO2 fixation and growth increased in step with increasing partial pressure of CO2 (pCO2), but only under Fe- replete conditions. N2) and carbon fixation rates at 75 Pa CO2 were 1.4-1.8-fold and 1.2-2.0-fold higher, respectively, relative to those at present day and glacial pCO2 …


Biochemical Composition Of Particles And Dissolved Organic Matter Slong An Estuarine Gradient: Sources And Implications For Dom Reactivity, Antonio Mannino, H. Rodger Harvey Jan 2000

Biochemical Composition Of Particles And Dissolved Organic Matter Slong An Estuarine Gradient: Sources And Implications For Dom Reactivity, Antonio Mannino, H. Rodger Harvey

OES Faculty Publications

The chemical composition of high molecular weight dissolved organic matter (DOM) and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. DOM was collected and fractionated by tangential-flow ultrafiltration into 1-30 kDa (HDOM; high molecular weight) and 30 kDa to 0.2 μm (VHDOM; very high molecular weight) and compared to particles collected in parallel. Polysaccharides comprised 12-43% of particulate organic carbon (POC), 30-56% of VHDOM carbon, and 7.5-19% of HDOM carbon. Hydrolyzable amino acids comprised 17-38% of POC, 5.4-12% of VHDOM carbon, and 1.5-4.2% of HDOM carbon. Only 7-43% of dissolved organic nitrogen in VHDOM …