Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology

Edith Cowan University

Seagrass

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Top 30 Cm Soil C Org Stocks, Isotopic C Org Signature (13dc) And Fine Sediment Content (Silt And Clay %) Estimated In Soil Cores Sampled In Seagrass Meadows Around Australia [Dataset], Ines Mazarrasa, Paul Lavery, Carlos M. Duarte, Anna Lafratta, Catherine E. Lovelock, Peter I. Macreadie, Jimena Samper-Villarreal, Cristian Salinas, Christian Sanders, Stacey Trevathan-Tackett, Mary Young, Andy Steven, Oscar Serrano Jan 2020

Top 30 Cm Soil C Org Stocks, Isotopic C Org Signature (13dc) And Fine Sediment Content (Silt And Clay %) Estimated In Soil Cores Sampled In Seagrass Meadows Around Australia [Dataset], Ines Mazarrasa, Paul Lavery, Carlos M. Duarte, Anna Lafratta, Catherine E. Lovelock, Peter I. Macreadie, Jimena Samper-Villarreal, Cristian Salinas, Christian Sanders, Stacey Trevathan-Tackett, Mary Young, Andy Steven, Oscar Serrano

Research Datasets

This database contains data on top 30 cm soil biogeochemical properties from soil cores (minimum length of 30 cm) sampled in seagrass (n=201 cores) and adjacent unvegetated patches (n=39) around Australia.

Average biogeochemical properties per core along with information about type of environment, biotic characteristics and environmental conditions.

In particular, the variables included in sheet 1 are:

- Core ID (column A): core code

- Location (column B): name of the region of the sampling site.

- Latitude / Longitude (columns C, D): latitude and longitude

- Bioregion (column E): classified the sampling sites according to …


Modeling Organic Carbon Accumulation Rates And Residence Times In Coastal Vegetated Ecosystems, E. Fay Belshe, Jose Sanjuan, Carmen Leiva-Dueñas, Nerea Piñeiro-Juncal, Oscar Serrano, Paul Lavery, Miguel Angel Mateo Jan 2019

Modeling Organic Carbon Accumulation Rates And Residence Times In Coastal Vegetated Ecosystems, E. Fay Belshe, Jose Sanjuan, Carmen Leiva-Dueñas, Nerea Piñeiro-Juncal, Oscar Serrano, Paul Lavery, Miguel Angel Mateo

Research outputs 2014 to 2021

Coastal vegetated “blue carbon” ecosystems can store large quantities of organic carbon (OC) within their soils; however, the importance of these sinks for climate change mitigation depends on the OC accumulation rate (CAR) and residence time. Here we evaluate how two modeling approaches, a Bayesian age-depth model alone or in combination with a two-pool OC model, aid in our understanding of the time lines of OC within seagrass soils. Fitting these models to data from Posidonia oceanica soil cores, we show that age-depth models provided reasonable CAR estimates but resulted in a 22% higher estimation of OC burial rates when …