Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Mineralizing Filamentous Bacteria From The Prony Bay Hydrothermal Field Give New Insights Into The Functioning Of Serpentinization-Based Subseafloor Ecosystems, Céline Pisapia, Emmanuelle Gérard, Martine Gérard, Léna Lecourt, Susan Q. Lang, Bernard Pelletier, Claude E. Payri, Christophe Monnin, Linda Guentas, Anne Postec, Marianne Quéméneur, Gaël Erauso, Bénédicte Ménez Jan 2017

Mineralizing Filamentous Bacteria From The Prony Bay Hydrothermal Field Give New Insights Into The Functioning Of Serpentinization-Based Subseafloor Ecosystems, Céline Pisapia, Emmanuelle Gérard, Martine Gérard, Léna Lecourt, Susan Q. Lang, Bernard Pelletier, Claude E. Payri, Christophe Monnin, Linda Guentas, Anne Postec, Marianne Quéméneur, Gaël Erauso, Bénédicte Ménez

Faculty Publications

Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed …


Assessing The Risk Of Carbon Dioxide Emissions From Blue Carbon Ecosystems, Catherine E. Lovelock, Trisha Brooke Atwood, Jeff Baldock, Carlos M. Duarte, Sharyn Hickey, Paul S. Lavery, Pere Masque, Peter I. Macreadie, Aurora M. Ricart, Oscar Serrano, Andy Steven Jan 2017

Assessing The Risk Of Carbon Dioxide Emissions From Blue Carbon Ecosystems, Catherine E. Lovelock, Trisha Brooke Atwood, Jeff Baldock, Carlos M. Duarte, Sharyn Hickey, Paul S. Lavery, Pere Masque, Peter I. Macreadie, Aurora M. Ricart, Oscar Serrano, Andy Steven

Watershed Sciences Faculty Publications

“Blue carbon” ecosystems, which include tidal marshes, mangrove forests, and seagrass meadows, have large stocks of organic carbon (Corg) in their soils. These carbon stocks are vulnerable to decomposition and – if degraded – can be released to the atmosphere in the form of CO2. We present a framework to help assess the relative risk of CO2 emissions from degraded soils, thereby supporting inclusion of soil Corg into blue carbon projects and establishing a means to prioritize management for their carbon values. Assessing the risk of CO2 emissions after various kinds of disturbances …


Ocean Acidification Compromises A Planktic Calcifier With Implications For Global Carbon Cycling, Cv Davis, Emily B. Rivest, Et Al Jan 2017

Ocean Acidification Compromises A Planktic Calcifier With Implications For Global Carbon Cycling, Cv Davis, Emily B. Rivest, Et Al

VIMS Articles

Anthropogenically-forced changes in ocean chemistry at both the global and regional scale have the potential to negatively impact calcifying plankton, which play a key role in ecosystem functioning and marine carbon cycling. We cultured a globally important calcifying marine plankter (the foraminifer, Globigerina bulloides) under an ecologically relevant range of seawater pH (7.5 to 8.3 total scale). Multiple metrics of calcification and physiological performance varied with pH. At pH > 8.0, increased calcification occurred without a concomitant rise in respiration rates. However, as pH declined from 8.0 to 7.5, calcification and oxygen consumption both decreased, suggesting a reduced ability to precipitate …