Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences

Graduate Theses, Dissertations, and Problem Reports

Machine learning

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Using Landsat-Based Phenology Metrics, Terrain Variables, And Machine Learning For Mapping And Probabilistic Prediction Of Forest Community Types In West Virginia, Faith M. Hartley Jan 2022

Using Landsat-Based Phenology Metrics, Terrain Variables, And Machine Learning For Mapping And Probabilistic Prediction Of Forest Community Types In West Virginia, Faith M. Hartley

Graduate Theses, Dissertations, and Problem Reports

This study investigates the mapping of forest community types for the entire state of West Virginia, USA using Global Land Analysis and Discovery (GLAD) Phenology Metrics analysis ready data (ARD) derived from the Landsat time series and digital terrain variables derived from a digital terrain model (DTM). Both classifications and probabilistic predictions were made using random forest (RF) machine learning (ML) and training data derived from ground plots provided by the West Virginia Natural Heritage Program (WVNHP). The primary goal of this study is to explore the use of globally consistent ARD data for operational forest type mapping over a …


A Machine Learning And Data-Driven Prediction And Inversion Of Reservoir Brittleness From Geophysical Logs And Seismic Signals: A Case Study In Southwest Pennsylvania, Central Appalachian Basin, Tobi Micheal Ore Jan 2020

A Machine Learning And Data-Driven Prediction And Inversion Of Reservoir Brittleness From Geophysical Logs And Seismic Signals: A Case Study In Southwest Pennsylvania, Central Appalachian Basin, Tobi Micheal Ore

Graduate Theses, Dissertations, and Problem Reports

In unconventional reservoir sweet-spot identification, brittleness is an important parameter that is used as an easiness measure of production from low permeability reservoirs. In shaly reservoirs, production is realized from hydraulic fracturing, which depends on how brittle the rock is–as it opens natural fractures and also creates new fractures. A measure of brittleness, brittleness index, is obtained through elastic properties of the rock. In practice, problems arise using this method to predict brittleness because of the limited availability of elastic logs.

To address this issue, machine learning techniques are adopted to predict brittleness at well locations from readily available geophysical …