Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences

Missouri University of Science and Technology

Bacteria

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

A New Model For The Spectral Induced Polarization Signature Of Bacterial Growth In Porous Media, Andre Revil, Estella A. Atekwana, C. Zhang, Abderrahim Jardani, Schaun M. Smith Sep 2012

A New Model For The Spectral Induced Polarization Signature Of Bacterial Growth In Porous Media, Andre Revil, Estella A. Atekwana, C. Zhang, Abderrahim Jardani, Schaun M. Smith

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The complex conductivity of porous materials and colloidal suspensions comprises two components: an in-phase conductivity associated with electromigration of the charge carriers and a quadrature conductivity associated with the reversible storage of the charges at some polarization length scales. We developed a quantitative model to investigate the frequency domain induced polarization response of suspensions of bacteria and bacteria growth in porous media. Induced polarization of bacteria (α polarization) is related to the properties of the electrical double layer of the bacteria. Surface conductivity and α polarization are due to the Stern layer of counterions occurring in a brush of polymers …


Magnetic Susceptibility As A Proxy For Investigating Microbially Mediated Iron Reduction, Farag M. Mewafy, Estella A. Atekwana, D. Dale Werkema, Lee D. Slater, Dimitrios Ntarlagiannis, Andre Revil, Magnus E. Skold, Geoffrey N. Delin Nov 2011

Magnetic Susceptibility As A Proxy For Investigating Microbially Mediated Iron Reduction, Farag M. Mewafy, Estella A. Atekwana, D. Dale Werkema, Lee D. Slater, Dimitrios Ntarlagiannis, Andre Revil, Magnus E. Skold, Geoffrey N. Delin

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

We investigated magnetic susceptibility (MS) variations in hydrocarbon contaminated sediments. Our objective was to determine if MS can be used as an intrinsic bioremediation indicator due to the activity of iron-reducing bacteria. A contaminated and an uncontaminated core were retrieved from a site contaminated with crude oil near Bemidji, Minnesota and subsampled for MS measurements. The contaminated core revealed enriched MS zones within the hydrocarbon smear zone, which is related to iron-reduction coupled to oxidation of hydrocarbon compounds and the vadose zone, which is coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane is coupled …


Microbial Nanowires: Is The Subsurface "Hardwired"?, Dimitrios Ntarlagiannis, Estella A. Atekwana, Eric A. Hill, Yuri A. Gorby Sep 2007

Microbial Nanowires: Is The Subsurface "Hardwired"?, Dimitrios Ntarlagiannis, Estella A. Atekwana, Eric A. Hill, Yuri A. Gorby

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The Earth's shallow subsurface results from integrated biological, geochemical, and physical processes. Methods are sought to remotely assess these interactive processes, especially those catalysed by micro-organisms. Using saturated sand columns and the metal reducing bacterium Shewanella oneidensis MR-1, we show that electrically conductive appendages called bacterial nanowires are directly associated with electrical potentials. No significant electrical potentials were detectable in columns inoculated with mutant strains that produced non-conductive appendages. Scanning electron microscopy imaging revealed a network of nanowires linking cells-cells and cells to mineral surfaces, "hardwiring" the entire length of the column. We hypothesize that the nanowires serve as conduits …


The Microbial Community Structure In Petroleum-Contaminated Sediments Corresponds To Geophysical Signatures, Jonathan P. Allen, Estella A. Atekwana, Eliot A. Atekwana, Joseph W. Duris, D. Dale Werkema, Silvia Rossbach May 2007

The Microbial Community Structure In Petroleum-Contaminated Sediments Corresponds To Geophysical Signatures, Jonathan P. Allen, Estella A. Atekwana, Eliot A. Atekwana, Joseph W. Duris, D. Dale Werkema, Silvia Rossbach

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueous-phase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed …


Microbial Growth And Biofilm Formation In Geologic Media Is Detected With Complex Conductivity Measurements, Caroline A. Davis, Estella A. Atekwana, Eliot A. Atekwana, Lee D. Slater, Silvia Rossbach, Melanie R. Mormile Sep 2006

Microbial Growth And Biofilm Formation In Geologic Media Is Detected With Complex Conductivity Measurements, Caroline A. Davis, Estella A. Atekwana, Eliot A. Atekwana, Lee D. Slater, Silvia Rossbach, Melanie R. Mormile

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and …


In-Situ Apparent Conductivity Measurements And Microbial Population Distribution At A Hydrocarbon-Contaminated Site, Estella A. Atekwana, D. Dale Werkema, Joseph W. Duris, Silvia Rossbach, Eliot A. Atekwana, William A. Sauck, Daniel P. Cassidy, Jay Means, Franklyn D. Legall Jan 2004

In-Situ Apparent Conductivity Measurements And Microbial Population Distribution At A Hydrocarbon-Contaminated Site, Estella A. Atekwana, D. Dale Werkema, Joseph W. Duris, Silvia Rossbach, Eliot A. Atekwana, William A. Sauck, Daniel P. Cassidy, Jay Means, Franklyn D. Legall

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light nonaqueous-phase liquid (LNAPL). The bulk conductivity was measured using in-situ vertical resistivity probes; the most probable number method was used to characterize the spatial distribution of aerobic heterotrophic and oil-degrading microbial populations. The purpose of this study was to assess if high conductivity observed at aged LNAPL-impacted sites may be related to microbial degradation of LNAPL. The results show higher bulk conductivity coincident with LNAPL-impacted zones, in contrast to geoelectrical models that predict lower conductivity in such zones. The highest bulk conductivity …