Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Data Science

FIU Electronic Theses and Dissertations

Deep Learning

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Anomaly Detection In Sequential Data: A Deep Learning-Based Approach, Jayesh Soni Jun 2022

Anomaly Detection In Sequential Data: A Deep Learning-Based Approach, Jayesh Soni

FIU Electronic Theses and Dissertations

Anomaly Detection has been researched in various domains with several applications in intrusion detection, fraud detection, system health management, and bio-informatics. Conventional anomaly detection methods analyze each data instance independently (univariate or multivariate) and ignore the sequential characteristics of the data. Anomalies in the data can be detected by grouping the individual data instances into sequential data and hence conventional way of analyzing independent data instances cannot detect anomalies. Currently: (1) Deep learning-based algorithms are widely used for anomaly detection purposes. However, significant computational overhead time is incurred during the training process due to static constant batch size and learning …


Intelligent Data Analytics Using Deep Learning For Data Science, Maria E. Presa Reyes May 2022

Intelligent Data Analytics Using Deep Learning For Data Science, Maria E. Presa Reyes

FIU Electronic Theses and Dissertations

Nowadays, data science stimulates the interest of academics and practitioners because it can assist in the extraction of significant insights from massive amounts of data. From the years 2018 through 2025, the Global Datasphere is expected to rise from 33 Zettabytes to 175 Zettabytes, according to the International Data Corporation. This dissertation proposes an intelligent data analytics framework that uses deep learning to tackle several difficulties when implementing a data science application. These difficulties include dealing with high inter-class similarity, the availability and quality of hand-labeled data, and designing a feasible approach for modeling significant correlations in features gathered from …


A Machine Learning Framework For Identifying Molecular Biomarkers From Transcriptomic Cancer Data, Md Abdullah Al Mamun Mar 2022

A Machine Learning Framework For Identifying Molecular Biomarkers From Transcriptomic Cancer Data, Md Abdullah Al Mamun

FIU Electronic Theses and Dissertations

Cancer is a complex molecular process due to abnormal changes in the genome, such as mutation and copy number variation, and epigenetic aberrations such as dysregulations of long non-coding RNA (lncRNA). These abnormal changes are reflected in transcriptome by turning oncogenes on and tumor suppressor genes off, which are considered cancer biomarkers.

However, transcriptomic data is high dimensional, and finding the best subset of genes (features) related to causing cancer is computationally challenging and expensive. Thus, developing a feature selection framework to discover molecular biomarkers for cancer is critical.

Traditional approaches for biomarker discovery calculate the fold change for each …