Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

The Impact Of Terrestrial Noise On The Detectability And Reconstruction Of Gravitational Wave Signals From Core-Collapse Supernovae, Jessica Mciver Nov 2015

The Impact Of Terrestrial Noise On The Detectability And Reconstruction Of Gravitational Wave Signals From Core-Collapse Supernovae, Jessica Mciver

Doctoral Dissertations

Among of the wide range of potentially interesting astrophysical sources for gravitational wave detectors Advanced LIGO and Advanced Virgo are galactic core-collapse supernovae. Although detectable core-collapse supernovae have a low expected rate (a few per century, or less) these signals would yield a wealth of new physics. Of particular interest is the insight into the explosion mechanism driving core-collapse supernovae that can be gleaned from the reconstructed gravitational wave signal. A well-reconstructed waveform will allow us to assess the likelihood of different explosion models, perform model selection, and potentially map unexpected features to new physics. This dissertation presents a series …


Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak Nov 2015

Gravitational Wave Astrophysics: Instrumentation, Detector Characterization, And A Search For Gravitational Signals From Gamma-Ray Bursts, Daniel Hoak

Doctoral Dissertations

In the coming years, the second generation of interferometric gravitational wave detectors are widely expected to observe the gravitational radiation emitted by compact, energetic events in the nearby universe. The field of gravitational wave astrophysics has grown into a large international endeavor with a global network of kilometer-scale observatories. The work presented in this thesis spans the field, from optical metrology, to instrument commissioning, to detector characterization and data analysis. The principal results are a method for the precise characterization of optical cavities, the commissioning of the advanced LIGO Output Mode Cleaner at the Hanford observatory, and a search for …


Gravitons To Photons--Attenuation Of Gravitational Waves, Preston Jones, Douglas Singleton Nov 2015

Gravitons To Photons--Attenuation Of Gravitational Waves, Preston Jones, Douglas Singleton

Publications

In this essay, we examine the response of an Unruh–DeWitt (UD) detector (a quantum two-level system) to a gravitational wave background. The spectrum of the UD detector is of the same form as some scattering processes or three body decays such as muon-electron scattering or muon decay. Based on this similarity, we propose that the UD detector response implies a “decay” or attenuation of gravitons, G, into photons, γ, via G+G→γ+γ or G→γ+γ+G. Over large distances such a decay/attenuation may have consequences in regard to the detection of gravitational waves.


Gravitational Waves: A New Window Into The Cosmos, Jeffrey S. Hazboun May 2015

Gravitational Waves: A New Window Into The Cosmos, Jeffrey S. Hazboun

Jeffrey Hazboun

No abstract provided.


Gravitational-Wave Mediated Preheating, Stephon Alexander, Sam Cormack, Antonino Marcianò, Nicolás Yunes Apr 2015

Gravitational-Wave Mediated Preheating, Stephon Alexander, Sam Cormack, Antonino Marcianò, Nicolás Yunes

Dartmouth Scholarship

We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.