Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Dynamics Of An Sir Model With Nonlinear Incidence And Treatment Rate, Balram Dubey, Preeti Dubey, Uma S. Dubey Dec 2015

Dynamics Of An Sir Model With Nonlinear Incidence And Treatment Rate, Balram Dubey, Preeti Dubey, Uma S. Dubey

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, global dynamics of an SIR model are investigated in which the incidence rate is being considered as Beddington-DeAngelis type and the treatment rate as Holling type II (saturated). Analytical study of the model shows that the model has two equilibrium points (diseasefree equilibrium (DFE) and endemic equilibrium (EE)). The disease-free equilibrium (DFE) is locally asymptotically stable when reproduction number is less than one. Some conditions on the model parameters are obtained to show the existence as well as nonexistence of limit cycle. Some sufficient conditions for global stability of the endemic equilibrium using Lyapunov function are obtained. …


Mathematical Modeling And Analysis Of Leukemia: Effect Of External Engineered T Cells Infusion, Manju Agarwal, Archana S. Bhadauria Jun 2015

Mathematical Modeling And Analysis Of Leukemia: Effect Of External Engineered T Cells Infusion, Manju Agarwal, Archana S. Bhadauria

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, a nonlinear model is proposed and analyzed to study the spread of Leukemia by considering the effect of genetically engineered patients T cells to attack cancer cells. The model is governed by four dependent variables namely; naive or susceptible blood cells, infected or dysfunctional blood cells, cancer cells and immune cells. The model is analyzed by using the stability theory of differential equations and numerical simulation. We have observed that the system is stable in the local and global sense if antigenicity rate or rate of stimulation of immune cells is greater than a threshold value dependent …