Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Relevancy Of Pulsed Electroacoustic Measurements For Investigating Spacecraft Charging, Zachary Gibson, J. R. Dennison Feb 2023

Relevancy Of Pulsed Electroacoustic Measurements For Investigating Spacecraft Charging, Zachary Gibson, J. R. Dennison

Journal Articles

The magnitude and spatial distribution of charge embedded in dielectric materials and the evolution of the charge distributions with time are paramount for the understanding and mitigation of spacecraft charging. Spacecraft materials are charged primarily by incident fluxes of low-energy electrons, with electron fluxes in the 10–50 keV range often responsible for the most deleterious arcing effects. While the pulsed electroacoustic (PEA) method can provide sensitive nondestructive measurements of the internal charge distribution in insulating materials, it has often been limited for spacecraft charging applications by typical spatial resolutions of ≤ 10 μm , with a 10- μm …


Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison Jun 2018

Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison

Conference Proceedings

Wireless intra-spacecraft communication technology is being developed as a weight-saving and design-simplifying measure for signal transfer on space missions. One consideration for this new technology is its interaction with space-environment induced electrostatic discharges (ESD). The short time scales of spacecraft ESD events results in broad frequency signals that can interact with wireless antennae. These interactions present a source of signal noise. However, they may also present a possibility of in-flight wireless ESD monitoring.

We present laboratory measurements of arcing on common spacecraft insulators using commercially available single band 2.4 GHz and dual band 2.4/5.8 GHz Wi-Fi antennas. These wireless detections …


Perspectives On The Distributions Of Esd Breakdowns For Spacecraft Charging Applications, Allen Andersen, Krysta Moser, Jr Dennison Aug 2017

Perspectives On The Distributions Of Esd Breakdowns For Spacecraft Charging Applications, Allen Andersen, Krysta Moser, Jr Dennison

Journal Articles

Electrostatic discharge (ESD) continues to pose significant risks to space missions despite decades of intense study. Tabulated values of material breakdown strength used in spacecraft charging models are often based on cursory measurements that may not be fully relevant to a given mission. Materials physics offers insight into the pertinent variables that affect breakdown and how to address them experimentally for spacecraft applications. We present measured distributions of ESD data across several test configurations for three polymeric materials that, taken together, begin to provide an understanding of how to estimate the likelihood of ESD events over a spacecraft’s mission lifetime. …


Dependence Of Electrostatic Field Strength On Voltage Ramp Rate For Spacecraft Materials, Krysta Moser, Allen Andersen, Jr Dennison Aug 2017

Dependence Of Electrostatic Field Strength On Voltage Ramp Rate For Spacecraft Materials, Krysta Moser, Allen Andersen, Jr Dennison

Journal Articles

This work investigated the dependence of electrostatic field strength for spacecraft materials on voltage ramp rate, by applying an increasing incremental electrostatic field until electrostatic breakdown occurred. Tests on Kapton E found that at ramp rates two or three orders of magnitude lower than the maximum recommended rate, the electrostatic breakdown field, FESD was lower by a factor of two or more. This suggests that tabulated values of FESD, which have been used by the spacecraft charging community, could substantially overestimate FESD in common slowly evolving spacecraft situations. This study expanded these ramp rate tests to include a wider range …


Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar Nov 2016

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar

Doctoral Dissertations

The idea of sequencing a DNA based on single-file translocation of the DNA through nanopores under the action of an electric field has received much attention over the past two decades due to the societal need for low cost and high-throughput sequencing. However, due to the high speed of translocation, interrogating individual bases with an acceptable signal to noise ratio as they traverse the pore has been a major problem. Experimental facts on this phenomenon are rich and the associated phenomenology is yet to be fully understood. This thesis focuses on understanding the underlying principles of polymer translocation, with an …


Electrostatic Discharge And Endurance Time Measurements Of Spacecraft Materials: A Defect-Driven Dynamic Model, Allen Andersen, Jr Dennison, Alec Sim, Charles Sim Jan 2015

Electrostatic Discharge And Endurance Time Measurements Of Spacecraft Materials: A Defect-Driven Dynamic Model, Allen Andersen, Jr Dennison, Alec Sim, Charles Sim

Journal Articles

Electrostatic breakdown leads to the majority of anomalies and failures attributed to spacecraft interactions with the plasma space environment. It is therefore critical to understand how electrostatic field strength (FESD) of spacecraft materials varies due to environmental conditions such as duration of applied electric field, rate of field change, history of exposure to high fields, and temperature. We have developed a dual-defect, thermodynamic, mean-field trapping model in terms of recoverable and irrecoverable defect modes to predict probabilities of breakdown. Fits to a variety of measurements of the dependence of FESD of insulating polymers on endurance time, voltage …


Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar Jan 2014

Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar

Electrical & Computer Engineering Faculty Publications

During the last two decades, research efforts on the application of low temperature plasmas in biology and medicine have positioned nonequilibrium lowtemperature plasmas as a technology that has the potential of revolutionizing healthcare.[1,2] Low temperature plasmas can be applied in direct contact with living tissues to inactivate bacteria,[3] to disinfect wounds and accelerate wound healing,[4] and to induce damage in some cancer cells.[5–11]


Enhancing The Performance Of Organic Thin Film Transistors By Cross-Linking The Organic Gate Dielectric, Soheila Naderi Gohar Nov 2013

Enhancing The Performance Of Organic Thin Film Transistors By Cross-Linking The Organic Gate Dielectric, Soheila Naderi Gohar

Electronic Thesis and Dissertation Repository

Amongst various surface modification techniques, hyperthermal hydrogen induced cross-linking (HHIC) has been used to modify the surface of polymeric samples. In this novel and innovative technique neutral hydrogen projectiles with appropriate kinetic energy are produced to generate carbon radicals on the impacted surface through the collision-induced C-H bond breaking. Subsequently, this phenomenon results in cross-linking hydrocarbon chains in the treated polymeric samples.

Verifying the validity of cross-linking process through experiments is the target of first part of presented dissertation. Spin-coated poly(methyl methacrylate) (PMMA) films on silicon wafer were exposed to hydrogen projectiles for different durations, while the other conditions related …


Hyperthermal H2 Induced C–H Bond Cleavage: A Novel Approach To Cross-Linking Of Organic Molecules, Tomas Trebicky Sep 2011

Hyperthermal H2 Induced C–H Bond Cleavage: A Novel Approach To Cross-Linking Of Organic Molecules, Tomas Trebicky

Electronic Thesis and Dissertation Repository

The development of simple and effective methods of incorporating molecular moieties with desirable properties into new functional materials is one of the ultimate goals of material scientists. The work presented in this thesis demonstrates an easy way to accomplish this using a beam of gaseous H2, which we call hyperthermal hydrogen induced cross-linking (HHIC). We prove theoretically and experimentally that when the kinetic energy of H2 is raised to ~20 eV, it becomes a light-mass projectile which is energetic enough to knock hydrogen atoms off of organic molecules, but not other heavier atoms. By developing a reactor …


Dynamics Of Nanoparticles In Complex Fluids., Rami Ahmad Saleh Omari Jan 2011

Dynamics Of Nanoparticles In Complex Fluids., Rami Ahmad Saleh Omari

Wayne State University Dissertations

Soft matter is a subfield of condensed matter including polymers, colloidal dispersions, surfactants, and liquid crystals. These materials are familiar from our everyday life- glues, paints, soaps, and plastics are examples of soft materials. Many phenomena in these systems have the same underlying physical mechanics. Moreover, it has been recognized that combinations of these systems, like for example polymers and colloids, exhibit new properties which are found in each system separately. These mixed systems have a higher degree of complexity than the separate systems. In order to understand their behavior, knowledge from each subfields of soft matter has to be …


Wrinkling Of Floating Thin Polymer Films, Jiangshui Huang Sep 2010

Wrinkling Of Floating Thin Polymer Films, Jiangshui Huang

Doctoral Dissertations 1896 - February 2014

This thesis presents an extensive study of wrinkling of thin polystyrene films, tens of nanometers in thickness, floating on the surface of water or water modified with surfactant.

First, we study the wrinkling of floating thin polystyrene films under a capillary force exerted by a drop of water placed on its surface. The wrinkling pattern is characterized by the number and length of wrinkles. A metrology for measuring the elasticity and thickness of ultrathin films is constructed by combining the scaling relations that are developed for the length of the wrinkles with those for the number of wrinkles. This metrology …


Temperature Dependence Of Radiation Induced Conductivity In Insulators, Jr Dennison, Jodie Corbridge Gillespie, Joshua Hodges, Ryan C. Hoffman, J Abott, Steven Hart, Alan W. Hunt Jan 2009

Temperature Dependence Of Radiation Induced Conductivity In Insulators, Jr Dennison, Jodie Corbridge Gillespie, Joshua Hodges, Ryan C. Hoffman, J Abott, Steven Hart, Alan W. Hunt

Journal Articles

We report on measurements of Radiation Induced Conductivity (RIC) of thin film Low Density Polyethylene (LDPE) samples. RIC occurs when incident ionizing radiation deposits energy in a material and excites electrons into conduction states. RIC is calculated as the difference in sample conductivity under an incident flux and “dark current” conductivity under no incident radiation.

The primary focus of this study is the temperature dependence of the steady state RIC over a wide range of absorbed dose rates, from cryogenic temperatures to well above room temperature. The measured RIC values are compared to theoretical predictions of dose rate and temperature …


Deep Dielectric Charging Of Spacecraft Polymers By Energetic Protons, Nelson W. Green, Jr Dennison Oct 2008

Deep Dielectric Charging Of Spacecraft Polymers By Energetic Protons, Nelson W. Green, Jr Dennison

Journal Articles

The majority of research in the field of spacecraft charging concentrates on electron charging effects with little discussion of charging by protons. For spacecraft orbiting in the traditional LEO and GEO environments, this emphasis on electrons is appropriate since energetic electrons are the dominant species. However, for spacecraft in orbits within the inner radiation belts, or for interplanetary and lunar space probes, proton charging effects may also be of concern. To examine bulk spacecraft charging effects in these environments, several typical highly insulating spacecraft polymers were exposed to energetic protons with energies from 1 to 10 MeV to simulate protons …


Characterisation Of An Acrylamide-Based Photopolymer For Data Storage Utilizing Holographic Angular Multiplexing, Hosam Sherif, Izabela Naydenova, Suzanne Martin, Colm Mcginn, Vincent Toal Jan 2005

Characterisation Of An Acrylamide-Based Photopolymer For Data Storage Utilizing Holographic Angular Multiplexing, Hosam Sherif, Izabela Naydenova, Suzanne Martin, Colm Mcginn, Vincent Toal

Articles

An acrylamide-based photopolymer formulated in the Centre for Industrial and Engineering Optics has been investigated with a view to further optimisation for holographic optical storage. Series of 18 to 30 gratings were angularly multiplexed in a volume of photopolymer layer at a spatial frequency of 1500 lines/mm. Since the photopolymer is a saturable material, an exposure scheduling method was used to exploit the entire dynamic range of the material and allow equal strength holographic gratings to be recorded. This investigation yielded the photopolymer M/# for moderately thin layers. Photopolymer temporal stability was also studied by measuring variations of material shrinkage, …