Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Theses/Dissertations

2014

Institution
Keyword
Publication

Articles 1 - 30 of 41

Full-Text Articles in Physical Sciences and Mathematics

Organic Solar Cells: Electrodes, Performance Enhancement And Degradation Mechanisms, Reginald J. Bauld Dec 2014

Organic Solar Cells: Electrodes, Performance Enhancement And Degradation Mechanisms, Reginald J. Bauld

Electronic Thesis and Dissertation Repository

In this thesis I focus on a number of aspects associated with the fabrication and characterization of organic photovoltaics. Specifically, my work focuses on evaluating solution processed graphene electrodes for use in organic photovoltaics, improving the performance of indium tin oxide transparent contacts by coating them with Au nanoparticles, and understanding the degradation pathways of Poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) organic solar cells. In my work on graphene electrodes for organic solar cells I worked out a relationship between the sheet resistance and the film transmittance that is useful to optimize such electrodes. Investigation of organic solar cell degradation …


Neutron Scattering Studies Of Phosphate Proton Conductors, Amal Bajes Al-Wahish Dec 2014

Neutron Scattering Studies Of Phosphate Proton Conductors, Amal Bajes Al-Wahish

Doctoral Dissertations

Proton ceramic fuel cells operating in the intermediate temperature range of 300-500 °C offer potentially revolutionary advantages over existing fuel cells because expensive noble metal catalysts would not be needed, and in situ reforming of liquid bio-fuels such as ethanol or methanol would be possible.The chief obstacle facing intermediate fuel cells is the lack of a suitable electrolyte in the operating temperature range. A good electrolyte is thermally and chemically stable, inexpensive, environmentally friendly, and has a proton conductivity on the order of 10-2 S cm-1 [Siemens per centimeter] at 400 °C. Acceptor-doped lanthanum orthophosphate is an …


Structural Characterization Of Multimetallic Nanoparticles, Vineetha Mukundan Oct 2014

Structural Characterization Of Multimetallic Nanoparticles, Vineetha Mukundan

Open Access Dissertations

Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10chemical ordering. …


Transport Studies Of Reentrant Integer Quantum Hall States Forming In The Two-Dimensional Electron Gas, Nianpei Deng Oct 2014

Transport Studies Of Reentrant Integer Quantum Hall States Forming In The Two-Dimensional Electron Gas, Nianpei Deng

Open Access Dissertations

The two dimensional electron gas subjected to a magnetic field has been a model system in contemporary condensed matter physics which generated many beautiful experiments as well as novel fundamental concepts. These novel concepts are of broad interests and have benefited other fields of research. For example, the observations of conventional odd-denominator fractional quantum Hall states have enriched many-body physics with important concepts such as fractional statistics and composite fermions. The subsequent discovery of the enigmatic even-denominator ν=5/2 fractional quantum Hall state has led to more interesting concepts such as non-Abelian statistics and pairing of composite fermions which can be …


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is …


Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu Oct 2014

Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu

Dissertations, Theses, and Capstone Projects

The discovery of high temperature superconductivity inspired a number of novel proposals, one of which, put forward by C.M.Varma, involves the breaking of time-reversal symmetry to explain the physics of the underdoped pseudogap phase. It was proposed that time-reversal symmetry is spontaneously broken as a result of strong repulsion between the Cu-O electrons to form loop-currents in the system.

In this work, we developed a general theory to study the quantum phase transitions in the 2 dimensional strongly interacting electronic systems in which time-reversal symmetry is spontaneously broken in the ground state. We first applied the theory of magnetic groups …


Defect-Related Magnetic And Electronic Properties Of Graphene, Arash Akbari-Sharbaf Sep 2014

Defect-Related Magnetic And Electronic Properties Of Graphene, Arash Akbari-Sharbaf

Electronic Thesis and Dissertation Repository

A fundamental study of the electronic and magnetic properties of graphene modified by defects is presented. This work includes both theoretical and experimental investigations of graphene, graphene-metal composites and related structures, together with edge effects. The theoretical model employed for the description of p-electrons in graphene is based on the tight-binding Hamiltonian. On the experimental side we place special emphasis on the electron spin resonance technique (ESR).

After describing the theoretical and experimental methods, we first investigate the origin of paramagnetism in graphene nanoribbons (GNRs) using a combination of ESR and other characterisation techniques, corroborated by a theoretical model. …


Growth, Structure, Electronic And Transport Properties Of Yttrium Disilicide Nanowires, Saban Mustafa Hus Aug 2014

Growth, Structure, Electronic And Transport Properties Of Yttrium Disilicide Nanowires, Saban Mustafa Hus

Doctoral Dissertations

The electronic properties of low-dimensional materials deviate significantly from their bulk counterparts. Especially in quasi one-dimensional (1D) materials, a small number of structural defects can lead to strong electron localization. Electrons may also display unusual collective behavior in 1D. As integrated circuits continue to shrink in size, there is an increasing need for understanding and possibly manipulating electronic transport in quasi 1D materials. Here, we focus on electrical transport in self-assembled YSi2 [yttrium disilicide] nanowires on Si(001). Being just a few atoms wide, these nanowires are one of the closest experimental realizations of a 1D conductor. YSi2 nanowires …


Study Of Ferroelectric Oxides And Field Effect In Complex Oxides Heterostructures, Lu Jiang Aug 2014

Study Of Ferroelectric Oxides And Field Effect In Complex Oxides Heterostructures, Lu Jiang

Doctoral Dissertations

With the rapid development of technology, the need for novel materials and state-of-theart devices is growing fast. Complex oxides which have strongly correlated electrons are favorable candidates for materials industry, due to their rich phase diagrams and multiple functions. Especially, ferroelectric oxides is very promising materials in the industry for storage, due to their bistable polarization states triggered by external electrical field. This thesis is centered on ferroelectric oxides, analyzing their lattice structures and investigating the interface of ferroelectrics and other complex oxides to examine the potential of the heteostructures in the application in electronic devices.

The most notable feature …


Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen Aug 2014

Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen

Doctoral Dissertations

In this thesis, we present several projects on the growth and functionality of layered materials, using density functional theory (DFT) method and phenomenological modeling approach. Beyond the understanding of growth mechanisms and exploration of properties, we propose novel avenues to realize controllable growth processes and layered materials with desirable properties. The contents have three major parts:

(1) Graphene growth on Cu(111) and Ni(111) substrates. We first demonstrate that the inherent multi-orientational degeneracy of the graphene islands on Cu(111) in the early stages of nucleation could result in the prevalence of grain boundaries (GBs). Next, we propose a possible solution to …


Probing The Size Dependent Chemical Properties Of Metals In Reduced Dimension, Xiangshi Yin Aug 2014

Probing The Size Dependent Chemical Properties Of Metals In Reduced Dimension, Xiangshi Yin

Doctoral Dissertations

Heterogeneously catalyzed reactions typically start with adsorption and dissociation of reactant molecules on the surface of a solid catalyst. In many instances, this is followed by surface diffusion of the adsorbed species, chemical reaction, and removal of the product molecule. According to the Sabatier principle, optimal catalytic performance requires that the bonding between the adsorbate molecule and the surface should neither be too strong nor too weak. This bonding strength is directly related to the catalyst’s surface electronic structure and hence, electronic structure modification would seem a promising approach for tuning catalytic activity.

There have been many studies along this …


Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng Aug 2014

Quantum Tuning Of Plasmons In Ultrathin Metal Films, Ao Teng

Doctoral Dissertations

The surface plasmon is a coherent charge density oscillation localized at a metal surface. It can couple with light and the resulting plasmon-polariton hybrid mode is confined to volumes that are much smaller than the classical diffraction limit of light. Nano-plasmonics is a rapidly evolving field where light manipulation at the nanoscale may lead to novel applications. However, as the size of plasmonic devices approaches the quantum-size regime, the macroscopic picture of plasmon may no longer be valid. To elucidate the influence of the discretization of the single particle spectrum on the collective plasmon response, we performed a systematic study …


The Isotope Effect On Proton Conduction And Glass Transition In Phosphoric Acid, Maximilian Ferdinand Heres Aug 2014

The Isotope Effect On Proton Conduction And Glass Transition In Phosphoric Acid, Maximilian Ferdinand Heres

Masters Theses

Hydrogen fuel cells combine hydrogen and oxygen to create water and electricity. Polymer electrolyte membranes (PEM) make up barriers within the fuel cell allowing only protons to pass through, while keeping other components separate. Many PEM contain phosphoric acid (PA) as a building block due to its excellent proton conducting properties. Improved ionic conductivity in PEM can lead to the development of better, more efficient fuel cells.

While ionic conductivity in PA at high temperatures is extensively characterized, the low temperature dynamics are not so well explored. Below the glass transition, molecular motion is frozen and proton motion is forced …


Structure Analysis Of Sn Bilayer Films On Si (111), Weisong Tu Aug 2014

Structure Analysis Of Sn Bilayer Films On Si (111), Weisong Tu

Masters Theses

Chemical doping is a well-established method for controlling the electronic properties of bulk semiconductors and, e.g, complex oxide materials. In this process, dopant atoms are located at substitutional lattice locations, from where they introduce free charge carriers to the host material. These carriers greatly improve the electrical conductivity of the host material and can even induce an insulator-metal transition at high doping levels. Dopants, however, also introduce scattering centers that are detrimental to conductivity, especially in low-dimensional systems such as nanowires and ultrathin films. These problems can be overcome by using a modulation doping approach in which the dopant atoms …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan Jul 2014

Quantum Levitation Using Metamaterials, Venkatesh K. Pappakrishnan

Doctoral Dissertations

The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the …


Dynamics And Manipulation Of Nanomagnets, Liufei Cai Jun 2014

Dynamics And Manipulation Of Nanomagnets, Liufei Cai

Dissertations, Theses, and Capstone Projects

This thesis presents my work on the spin dynamics of nanomagnets and investigates the possibility of manipulating nanomagnets by various means. Most of the work has been published\cite{LC-PRB2010, LC-PRB2012, LC-PRB2013, LC-EPL2014}. Some has been submitted for publication\cite{LC-arxiv2014}. The structure of this thesis is as follows.

In Chapter 1, I present the theory of manipulation of a nanomagnet by rotating ac fields whose frequency is time dependent. Theory has been developed that maps the problem onto Landau-Zener problem. For the linear frequency sweep the switching phase diagrams are obtained on the amplitude of the ac field and the frequency sweep rate. …


Optical Properties Of De Vries Liquid Crystals And A Look At Ultra Thin Freely Suspended Smectic Films, Joshua P. Fankhauser Jun 2014

Optical Properties Of De Vries Liquid Crystals And A Look At Ultra Thin Freely Suspended Smectic Films, Joshua P. Fankhauser

Physics

Liquid crystals exist as a fourth state of matter. They are anisotropic and due to this order, they affect light that passes through them, making them ideal candidates for optical study. By employing a basic technique for measuring a liquid crystal's birefringence and tilt angle, one is able to study a number of other properties such as the electroclinic effect. In addition, smectic liquid crystals have been studied intently because of their ability to create stable ultra-thin films of quantized layer thickness. These thin films have been studied due to the fact that they are an ideal system for investigating …


The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash May 2014

The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash

USF Tampa Graduate Theses and Dissertations

The discovery of ferroelectricity at the nanoscale has incited a lot of interest in perovskite ferroelectrics not only for their potential in device application but also for their potential to expand fundamental understanding of complex phenomena at very small size scales. Unfortunately, not much is known about the dynamics of ferroelectrics at this scale. Many of the widely held theories for ferroelectric materials are based on bulk dynamics which break down when applied to smaller scales. In an effort to increase understanding of nanoscale ferroelectric materials we use atomistic resolution computational simulations to investigate the dynamics of polar perovskites. Within …


Synthesis And Characterization Of Magnetic Nanowires Prepared By Chemical Vapor Deposition, Siwei Tang May 2014

Synthesis And Characterization Of Magnetic Nanowires Prepared By Chemical Vapor Deposition, Siwei Tang

Doctoral Dissertations

Various metal silicide and germanide magnetic nanowires were synthesized using a home-built CVD [chemical vapor deposition] system. The morphology, composition, and magnetic properties of the nanowires were studied and correlated with growth parameters such as temperature, pressure, time, and source-substrate distance.

One of the compositions targeted for synthesis was MnSi [manganese silicide]. In bulk, this material orders helimagnetically at Tc [curie temperature] = 30K, with a helical pitch of about 20 nm. After extensive study, we learned that the thickness of the silicon dioxide layer on the substrate is a critical parameter for the growth of MnSi nanowires. An …


Neutron Scattering Studies Of Cuprates And Iron Pnictides, Mengshu Liu May 2014

Neutron Scattering Studies Of Cuprates And Iron Pnictides, Mengshu Liu

Doctoral Dissertations

Presented within are neutron scattering studies of several different high temperature superconducting materials: BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic], BaFe1.85Ni0.15As2 [Barium Iron Nickel Arsenic], Ba0.67K0.33Fe2As2 [Barium Potassium Iron Arsenic], and Pr0.88LaCe0.12CuO4-y [Praseodymium Lanthanum Cerium Copper Oxide]. The main focus is on the magnetic excitations within the systems.

For BaFe1.9Ni0.1As2 [Barium Iron Nickel Arsenic], we measured the intensity of its magnetic excitations and compared the results with excitations in antiferromagnetic non-superconducting BaFe2As2 …


Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov May 2014

Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov

Graduate Theses and Dissertations

In this dissertation, a first-principle-based approach is developed to study magnetoelectric effect in multiferoic materials. Such approach has a significant predictive power and might serve as a guide to new experimental works. As we will discuss in the course of this work, it also gives an important insight to the underlying physics behind the experimentally observed phenomena.

We start by applying our method to investigate properties of a generic multiferroic material. We observe how magnetic susceptibility of such materials evolves with temperature and compare this evolution with the characteristic behavior of magnetic susceptibility for pure magnetic systems. Then we focus …


Reconstructions At The Interface In Complex Oxide Heterostructures With Strongly Correlated Electrons, Benjamin Gray May 2014

Reconstructions At The Interface In Complex Oxide Heterostructures With Strongly Correlated Electrons, Benjamin Gray

Graduate Theses and Dissertations

Strongly correlated oxides exhibit a rich spectrum of closely competing orders near the localized-itinerant Mott insulator transition leaving their ground states ripe with instabilities susceptible to small perturbations such as lattice distortions, variation in stoichiometry, magnetic and electric fields, etc. As the field of interfacial engineering has matured, these underlying instabilities in the electronic structure of correlated oxides continue to be leveraged to manipulate existing phases or search for emergent ones. The central theme is matching materials across the interface with disparate physical, chemical, electronic, or magnetic structure to harness interfacial reconstructions in the strongly coupled charge, spin, orbital, and …


Atomic-Scale Characterization And Manipulation Of Freestanding Graphene Using Adapted Capabilities Of A Scanning Tunneling Microscope, Steven Barber May 2014

Atomic-Scale Characterization And Manipulation Of Freestanding Graphene Using Adapted Capabilities Of A Scanning Tunneling Microscope, Steven Barber

Graduate Theses and Dissertations

Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample.

First, the acquisition of atomic-scale images of freestanding graphene …


Discrete Strain Engineering In Graphene, Cedric Marcus Horvath May 2014

Discrete Strain Engineering In Graphene, Cedric Marcus Horvath

Graduate Theses and Dissertations

Graphene has a number of fascinating mechanical and electrical properties. Strain engineering in graphene is the attempt to control its properties with mechanical strain. Previous research in this area has come up with an approach using a continuum theory to describe the strain induced gauge fields in graphene; however, this approach is only valid for small strains (5% at most). A discrete framework is being developed in Arkansas that can more accurately calculate the deformation (electrical) and (pseudo-)magnetic gauge fields created by large strains. Computational simulations were carried out and used to get discrete atomic positions for strained, suspended graphene …


Quantum Optics Of Polaritonic Nanocomposites, Chris Racknor Apr 2014

Quantum Optics Of Polaritonic Nanocomposites, Chris Racknor

Electronic Thesis and Dissertation Repository

In this thesis, we study the quantum optical interaction in polaritonic nanocomposites. These systems are made by the combination of two or more micro- or nano-scale structures with complementary optical properties, such as polaritonic materials, excitonic materials, photonic crystals (PCs), quantum dots (QDs), waveguides, couplers, metal nanorods (MNRs), bionanoparticles. The nanocomposites systems studied included QDs doped within a polaritonic PC, an excitonic waveguide coupler, and a metamaterial waveguide. Also addressed are systems consisting of MNRs paired with biological labelling dye or QDs.

The application of a strain field, known as the acousto-optic effect, was found to control photon transmission in …


First-Principles Atomistic Simulations Of Energetic Materials, Aaron Christopher Landerville Apr 2014

First-Principles Atomistic Simulations Of Energetic Materials, Aaron Christopher Landerville

USF Tampa Graduate Theses and Dissertations

This dissertation is concerned with the understanding of physico-chemical properties of energetic materials (EMs). Recently, a substantial amount of work has been directed towards calculations of equations of state and structural changes upon compression of existing EMs, as well as elucidating the underlying chemistry of initiation in detonating EMs. This work contributes to this effort by 1) predicting equations of state and thermo-physical properties of EMs, 2) predicting new phases of novel EMs, and 3) examining the initial stages of chemistry that result in detonation in EMs. The motivation for the first thrust, is to provide thermodynamic properties as input …


I. Accurate 50-200 Kev Proton Stopping Cross Sections In Solids Ii. Lateral Growth Of Si Wires On Si (100) Substrate, Sergey Dedyulin Feb 2014

I. Accurate 50-200 Kev Proton Stopping Cross Sections In Solids Ii. Lateral Growth Of Si Wires On Si (100) Substrate, Sergey Dedyulin

Electronic Thesis and Dissertation Repository

Medium energy ion scattering (MEIS) is used to determine the elemental depth profile in the first few hundred angstroms of a sample. The interpretation of MEIS spectra requires an accurate knowledge of the rate at which the ions lose their energy - the stopping cross section, ε. The rate of energy loss has been fairly well investigated, both experimentally and theoretically, in elemental and compound targets at high energies (E>400 keV/amu). However, in the medium ion energy range where stopping cross section typically has a maximum, experimental data are scarce while most of the existing theories fail to give …


A Molecular Simulation Study On Micelle Fragmentation And Wetting In Nano-Confined Channels, Mona Habibi Jan 2014

A Molecular Simulation Study On Micelle Fragmentation And Wetting In Nano-Confined Channels, Mona Habibi

Electronic Thesis and Dissertation Repository

We performed coarse-grained molecular-dynamics (MD) simulations to study the structural and dynamical properties of surfactant micelles in equilibrium and under Poiseuille-like flow in a nano-confined geometry. We used the MARTINI force-field to model the interactions between water molecules, counter-ions, and sodium dodecyl sulfate (SDS) surfactants. SDS surfactant was chosen as the standard model because of its potential application in drug delivery systems. First, we focused on the self-assembly of SDS in equilibrium. To form stable spherical mi- celles, we ran simulations in the isothermal-isobaric ensemble (NPT) on a system of free SDS surfactants, counter-ions and water molecules. We studied the …


Modeling The Defect Density Of States Of Disordered Sio2 Through Cathodoluminescence, Amberly Evans Jensen Jan 2014

Modeling The Defect Density Of States Of Disordered Sio2 Through Cathodoluminescence, Amberly Evans Jensen

Theses and Dissertations

Spacecraft charging is the accumulation of an electrical charge on orbiting spacecraft induced by the space plasma environment and has harmful effects on the electrical functionality of a spacecraft. This is studied extensively, particularly in the Materials Physics Group (MPG) at Utah State University (USU). During charging studies performed by the MPG, another potentially problematic effect of the space plasma environment on spacecraft was observed: light emanating from the sample undergoing electron beam bombardment. Space-based observatories are one type of spacecraft on which this luminescence may occur. If the luminescence from the material caused by the space plasma is within …