Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Theses/Dissertations

2010

Institution
Keyword
Publication

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

Spin-Lattice Coupling In The Iron-Pnictide High-Temperature Superconductors, Daniel E Parshall Dec 2010

Spin-Lattice Coupling In The Iron-Pnictide High-Temperature Superconductors, Daniel E Parshall

Doctoral Dissertations

The recent discovery of the iron-pnictide superconductors has generated tremendous excitement, in part because there are many tantalizing similarities to the cuprate superconductors. As with the cuprates, it is strongly suspected that the spins contribute to superconductivity.

There seems to be a strong relationship between the lattice and magnetism in this system. Several authors have discussed the possibility of spin-phonon coupling, but direct experimental evidence has remained elusive.

This work discusses the relationship between the spins and the lattice in the $BaFe_{2}As_{2}$ family. We demonstrate the presence of negative thermal expansion in these materials, which is a strong indicator of …


Chemical And Electronic Structure Of Surfaces And Interfaces In Compound Semiconductors, Sujitra Pookpanratana Dec 2010

Chemical And Electronic Structure Of Surfaces And Interfaces In Compound Semiconductors, Sujitra Pookpanratana

UNLV Theses, Dissertations, Professional Papers, and Capstones

The interface formation between two different materials is important in applications for optoelectronic devices. Often, the success or performance of these devices is dependent on the formation of these heterojunctions. In this work, the surface and interfaces in such materials for optoelectronic devices are investigated by a suite of X-ray analytical techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), and X-ray emission (XES) spectroscopies to provide novel insight.

For the group III-nitrides (e.g., AlxGa1-xN) used in many light emitting devices, a significant challenge exists to form an Ohmic contact. The electron affinities and band gaps of GaN and …


Measurement System For High Pressure Characterizations Of Materials, Matthew K. Jacobsen Dec 2010

Measurement System For High Pressure Characterizations Of Materials, Matthew K. Jacobsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Thermoelectric materials have long been investigated for possible use as power sources. This application was recently put to use in the Voyager space program, powering the deep space probes. Despite the usefulness of these materials, the use of pressure to investigate the material properties has only recently become interesting. As such, the work in this document was to developing a system for concurrently measuring the necessary properties. This system is capable of measuring the electrical resistivity, thermal conductivity, and Seebeck coefficient in the pressure range from 0 - 10 GPa. The results for zinc, almandine garnet, and nickel are presented …


Characterization And Interactions Of Ultrafast Surface Plasmon Pulses, Sibel Ebru Yalcin Sep 2010

Characterization And Interactions Of Ultrafast Surface Plasmon Pulses, Sibel Ebru Yalcin

Open Access Dissertations

Surface Plasmon Polaritons (SPPs) are considered to be attractive components for plasmonics and nanophotonic devices due to their sensitivity to interface changes, and their ability to guide and confine light beyond the diffraction limit. They have been utilized in SPP resonance sensors and near field imaging techniques and, more recently, SPP experiments to monitor and control ultrafast charge carrier and energy relaxation dynamics in thin films. In this thesis, we discuss excitation and propagation properties of ultrafast SPPs on thin extended metal films and SPP waveguide structures. In addition, localized and propagating surface plasmon interactions in functional plasmonic nanostructures will …


Wrinkling Of Floating Thin Polymer Films, Jiangshui Huang Sep 2010

Wrinkling Of Floating Thin Polymer Films, Jiangshui Huang

Doctoral Dissertations 1896 - February 2014

This thesis presents an extensive study of wrinkling of thin polystyrene films, tens of nanometers in thickness, floating on the surface of water or water modified with surfactant.

First, we study the wrinkling of floating thin polystyrene films under a capillary force exerted by a drop of water placed on its surface. The wrinkling pattern is characterized by the number and length of wrinkles. A metrology for measuring the elasticity and thickness of ultrathin films is constructed by combining the scaling relations that are developed for the length of the wrinkles with those for the number of wrinkles. This metrology …


Interplay Between Structure And Chemistry Of Materials And Their Physical Properties, Alaska Subedi Aug 2010

Interplay Between Structure And Chemistry Of Materials And Their Physical Properties, Alaska Subedi

Doctoral Dissertations

First principles calculations provide a powerful tool for sorting out the interplay of chemical composition and structure with the physical properties of materials. In this dissertation, I discuss the physical properties and their microscopic basis within this framework for following illustrative examples. (i) The Zintl phase hydrides, where I find H is anionic and the formation of covalent sp2 bonds in the Al/Ga/Al-Si planes, which is a highly unusual bonding configuration for these elements. (ii) PbTe, which shows strong coupling between the longitudinal acoustic and transverse optic modes that may explain its low thermal conductivity. (iii) The double perovskites BiPbZnNbO6 …


Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy Aug 2010

Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy

Masters Theses

Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed.

Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s …


Experiments On De Vries Liquid Crystals: A Software Approach, Austin Havens Jun 2010

Experiments On De Vries Liquid Crystals: A Software Approach, Austin Havens

Physics

This paper describes two programs I developed to facilitate the study of liquid crystals. The first program is a graphical user interface to increase the accuracy of the birefringence measurements , which relates to their orientational order, by using a camera. The second program was designed to help study the effects of time varying fields on liquid crystals by matching data from a recorded video to oscilloscope data in order to attach data from image analysis to the voltage applied to the cell.


Search For Dark Matter Annihilation In M5, Daniel Jackson Jun 2010

Search For Dark Matter Annihilation In M5, Daniel Jackson

Physics

We analyzed the Messier 5 (M5) globular cluster for dark matter annihilation using data from VERITAS (Very Energetic Radiation Imaging Telescope Array System) to improve the flux upper limit previously done by Michael McCutecheon. We used updated software and lower energy thresholds. VERITAS consists of four ground-based gamma-ray telescopes located at the Fred Lawrence Whipple Observatory in southern Arizona. Thirty-five 20 minute observations of M5 from VERITAS are used in our analysis. The observations were collected from February to March in 2009, for a total exposure time of 10.63 hours. Gamma-rays from dark matter annihilation were not found,
but better …


Neutron Scattering Study Of The High Tc Superconductors, Jun Zhao May 2010

Neutron Scattering Study Of The High Tc Superconductors, Jun Zhao

Doctoral Dissertations

We carried out systematic neutron scattering experiments to investigate the magnetic properties and their relationship to the high-$T_c$ superconductivity, when the materials are tuned from their antiferromagnetic (AF) parent compounds to the superconducting regime.

We observed resonance mode in the electron doped cuprate Nd$_{1.85}$Ce$_{0.15}$CuO$_4$, demonstrating that the resonance is a general phenomenon in cuprate superconductors regardless of hole- or electron-doping. In Pr$_{0.88}$LaCe$_{0.12}$CuO$_4$, the local susceptibility displays two distinct energy scales that are broadly consistent with the bosonic modes revealed by scanning tunneling microscopy experiments. These results indicate the presence of very strong electron spin excitations couplings in electron doped cuprates. …


Hopping Conductivity And Charge Transport In Low Density Polyethylene, Jerilyn Brunson May 2010

Hopping Conductivity And Charge Transport In Low Density Polyethylene, Jerilyn Brunson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The properties and behaviors of charge transport mechanisms in highly insulating polymers are investigated by measuring conduction currents through thin film samples of low density polyethylene (LDPE). Measurements were obtained using a constant voltage method with copper electrodes inside a chamber adapted for measurements under vacuum and over a wide range of temperatures and applied fields. Field-dependent behaviors, including Poole-Frenkel conduction, space charge limited current (SCLC), and Schottky charge injection, were investigated at constant temperature. These field-dependent mechanisms were found to predict incorrect values of the dielectric constant and the field dependence of conductivity in LDPE was not found to …


Partial Phonon Density Of States Of 57-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis May 2010

Partial Phonon Density Of States Of 57-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis

UNLV Theses, Dissertations, Professional Papers, and Capstones

The dual partial phonon density of states (DOS) from two different Mossbauer isotopes (161Dy and 57Fe) in the same material (DyFe3) was successfully measured using the nuclear resonant inelastic x-ray scattering (NRIXS) technique at high pressure. Nuclear inelastic scattering measurements yield an in-depth understanding of the element-specific dynamic properties. The Debye temperatures , the Lamb-Mossbauer factor, and the vibrational contributions to the Helmholtz free energy, specific heat , entropy and internal energy are calculated directly from the phonon density of states.


Electron-Induced Electron Yields Of Uncharged Insulating Materials, Ryan Carl Hoffmann May 2010

Electron-Induced Electron Yields Of Uncharged Insulating Materials, Ryan Carl Hoffmann

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Presented here are electron-induced electron yield measurements from high-resistivity, high-yield materials to support a model for the yield of uncharged insulators. These measurements are made using a low-fluence, pulsed electron beam and charge neutralization to minimize charge accumulation. They show charging induced changes in the total yield, as much as 75%, even for incident electron fluences of <3 fC/mm2, when compared to an uncharged yield. The evolution of the yield as charge accumulates in the material is described in terms of electron recapture, based on the extended Chung and Everhart model of the electron emission spectrum and the dual dynamic …


Photon Density Of States Of 47-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis Apr 2010

Photon Density Of States Of 47-Iron And 161-Dysprosium In Dyfe3 By Nuclear Resonant Inelastic X-Ray Scattering Under High Pressure, Elizabeth Anne Tanis

UNLV Theses, Dissertations, Professional Papers, and Capstones

The dual partial phonon density of states (DOS) from two different Mossbauer isotopes (161Dy and 57Fe) in the same material (DyFe3) was successfully measured using the nuclear resonant inelastic x-ray scattering (NRIXS) technique at high pressure. Nuclear inelastic scattering measurements yield an in-depth understanding of the element-specific dynamic properties. The Debye temperatures, the Lamb-Mossbauer factor (fLM), and the vibrational contributions to the Helmholtz free energy (Fvib), specific heat (cV ), entropy (Svib) and internal energy (Uvib) are calculated directly from the phonon density of states.


Finite Strain Studies Of Single Crystal Fe3p Under High Pressures, John William Howard Apr 2010

Finite Strain Studies Of Single Crystal Fe3p Under High Pressures, John William Howard

UNLV Theses, Dissertations, Professional Papers, and Capstones

Fe3P (synthetic schreibersite) is a phosphide occurring in iron alloys. Phosphorousis often considered an undesired impurity causing brittleness. Conversely, in some cases the addition of iron phosphides to certain materials is beneficial (e.g.properties of certain frictional materials are enhanced). In terrestrial rock, we do not find Fe3P, although (Fe;Ni)3P (natural schreibersite) is found in nearly all iron-containing meteorites. In this project, we examine the unit cell parameters of Fe3P as function of pressure and derive the respective axial and bulk compressibilities. Both Vinet and Birch-Murnaghan formulations were used to relate pressure and unit cell volume, and a comparison of each …


A Solution-Based Approach To The Fabrication Of Novel Chalcogenide Glass Materials And Structures, Nathan Carlie Mar 2010

A Solution-Based Approach To The Fabrication Of Novel Chalcogenide Glass Materials And Structures, Nathan Carlie

All Dissertations

Chalcogenide glasses (ChGs) are well known for their large optical nonlinearities and high infrared transparency, and are candidate materials for next-generation thin film-based planar infrared (IR) optical applications. They are also known, however, to possess low thermal and mechanical stability as compared to oxide glasses. Traditional physical vapor deposition (PVD) methods used for the deposition of these materials as thin films often suffer from low deposition rates, deviation from stoichiometry, and cannot coat over complex surfaces. In order to retain the attractive optical properties of ChGs while enabling new fabrication routes and hybrid and composite material systems, we have developed …


A Study Of Structure-Property Correlation In V2o5 And Tio2 Based Thin Films As Functional Materials, Chandra Thapa Jan 2010

A Study Of Structure-Property Correlation In V2o5 And Tio2 Based Thin Films As Functional Materials, Chandra Thapa

Wayne State University Dissertations

ABSTRACT

A STUDY OF STRUCTURE-PROPERTY CORRELATION IN V2O5 AND TiO2 BASED THIN FILMS AS FUNCTIONAL MATERIALS

by

CHANDRA THAPA

June 2010

Advisor: Dr. Ratna Naik

Co-Advisor: Dr. K. R. Padmanabhan

Major: Physics (Condensed Matter)

Degree: Doctor of Philosophy

The focus of this thesis is to study the structure-property correlation in thin films of V2O5 and TiO2 based transition metal oxides as functional materials. V2O5 is investigated as a cathode material for lithium ion battery and TiO2 as a high-K dielectric material.

We studied V2O5 thin films prepared by spin coating using three different types of precursors, MOD precursor, sol-gel organic …


Measuring The Nanomechanics Of Nanoconfined Water Layers, Shah Haidar Khan Jan 2010

Measuring The Nanomechanics Of Nanoconfined Water Layers, Shah Haidar Khan

Wayne State University Dissertations

Nanoconfined water has been the subject of special interest due to its applications in various fields such as biology, geology, medicine, and engineering tribology. While there is a general agreement on the layering of water molecules along atomically smooth surfaces, the behavior and properties of nanoconfined water is still poorly understood. A significant controversy exists whether there is a phase transformation imposed by confinement. We have measured the stiffness and damping coefficient of nanoconfined water using a small amplitude (0.5-1 Å) atomic force microscope. The results were analyzed with the help of two viscoelastic models, the Kelvin model and the …


Electro-Optic And Magneto-Dielectric Properties Of Multifunctional Nitride And Oxide Materials, Ambesh Dixit Jan 2010

Electro-Optic And Magneto-Dielectric Properties Of Multifunctional Nitride And Oxide Materials, Ambesh Dixit

Wayne State University Dissertations

ABSTRACT

Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties.

Thin …


Pressure Induced Dynamical Instabilities In Body Center Cubic Crystals, Oscar Guerrero Jan 2010

Pressure Induced Dynamical Instabilities In Body Center Cubic Crystals, Oscar Guerrero

Open Access Theses & Dissertations

Large-scale atomistic simulations of shock-wave propagation in single crystals exhibit large anisotropies in the elastic-plastic and solid-liquid transitions. Characteristic of this type of simulations are the large strains at which the crystal yields plastically, regardless of crystal orientation. At these large strains, uniaxial deformations, such as those produced in planar shock loading generate dynamical instabilities. We have investigated the directional anisotropy of the elastic limit in bcc crystals, in particular Tantalum (Ta), employing molecular dynamics (MD) simulations. We show that the elastic - plastic transition in BCC defect-free crystals is caused by the appearance of soft-phonon modes and not via …


Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo Jan 2010

Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo

Open Access Theses & Dissertations

The objective of this study is targeted toward improving the quality of pure tungsten oxide (WO3) for application to the detection of poisoning gases, especially of H2S. While pure WO3 is a recognized candidate for gas sensing, its characteristics are strongly dependent on the conditions and methods used in its deposition.

Samples of WO3 thin films analyzed in this work were grown on silicon and sapphire substrates using RF magnetron sputtering at a number of different substrate temperatures and Ar:O2 pressure ratios. The properties of the samples were investigated spectroscopically with the goal of determining how variations in the above …


Quantum Dot Quantum Computation In Iii-V Type Semiconductor, Sanjay K. Prabhakar Jan 2010

Quantum Dot Quantum Computation In Iii-V Type Semiconductor, Sanjay K. Prabhakar

Legacy Theses & Dissertations (2009 - 2024)

Among recent proposals for next-generation, non-charge-based logic is the notion that a single electron can be trapped and spin of the electron can be manipulated through the application of gate potentials. In the thesis, there are two major contributions of the manipulation of electron spin. In regard to the first contribution, we present numerical simulations of such a spin in single electron devices for realistic asymmetric potentials in electrostatically confined quantum dot. Using analytical and numerical techniques we show that breaking in-plane rotational symmetry of the confining potential by applied gate voltage leads to a significant effect on the tuning …


Reflectivity Of A Cholesteric Liquid Crystal, Justin Lawson Jan 2010

Reflectivity Of A Cholesteric Liquid Crystal, Justin Lawson

Physics

In this paper we investigate the light properties of a chiral liquid crystal or a crystal for which the director angle relative to some fixed axis changes as a function of the crystal depth. Sometimes a dopant can introduce a chirality or "twist" in a nematic liquid crystal. For such cases of non-linear depth dependence (where chirality is determined by a diffusion equation) we may use this research to work backwards from a crystal's light properties to intensity and duration of dopant exposure.


Harmonic Sputtering Theory, Zhu Lin Zhang Jan 2010

Harmonic Sputtering Theory, Zhu Lin Zhang

Wayne State University Dissertations

ABSTRACT

HARMONIC SPUTTERING THEORY

By

ZHU LIN ZHANG

February 2010

Advisor: Dr. Karur R. Padmanabhan

Major: Physics

Degree: Doctor of Philosophy

Based on the standard Botzmann equation in Classical Statistics Mechanics, we have derived a variety of Linear Transport Equations appeared in Sputtering Theory for a random, infinite multi-components medium. The pertinent relations among these Linear Transport Equations have been studied in detail. We have introduced exact classical scattering cross-sections of power potential interaction collision into these Transport Equations and solved them asymptotically by using Laplace Transformation for both isotropic term and anisotropic term. A pool of analytical asymptotic solutions …