Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

City University of New York (CUNY)

Theses/Dissertations

Exciton

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand Feb 2024

Exciton Dynamics, Interaction, And Transport In Monolayers Of Transition Metal Dichalcogenides, Saroj Chand

Dissertations, Theses, and Capstone Projects

Monolayers Transition metal dichalcogenides (TMDs) have attracted much attention in recent years due to their promising optical and electronic properties for applications in optoelectronic devices. The rich multivalley band structure and sizable spin-orbit coupling in monolayer TMDs result in several optically bright and dark excitonic states with different spin and valley configurations. In the proposed works, we have developed experimental techniques and theoretical models to study the dynamics, interactions, and transport of both dark and bright excitons.

In W-based monolayers of TMDs, the momentum dark exciton cannot typically recombine optically, but they represent the lowest excitonic state of the system …


Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu Oct 2014

Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu

Dissertations, Theses, and Capstone Projects

The discovery of high temperature superconductivity inspired a number of novel proposals, one of which, put forward by C.M.Varma, involves the breaking of time-reversal symmetry to explain the physics of the underdoped pseudogap phase. It was proposed that time-reversal symmetry is spontaneously broken as a result of strong repulsion between the Cu-O electrons to form loop-currents in the system.

In this work, we developed a general theory to study the quantum phase transitions in the 2 dimensional strongly interacting electronic systems in which time-reversal symmetry is spontaneously broken in the ground state. We first applied the theory of magnetic groups …