Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Hiking Trail Generation In Infinite Landscapes, Matthew Jensen Nov 2023

Hiking Trail Generation In Infinite Landscapes, Matthew Jensen

MS in Computer Science Project Reports

This project procedurally generates an infinite wilderness populated with deterministic hiking trails. Our approach recognizes that hiking trails depend on contextual information beyond the location of the path itself. To address this, we implemented a layered procedural system that orchestrates the generation process. This helps ensure the availability of contextual data at each stage. The first layer handles terrain generation, establishing the foundational landscape upon which trails will traverse. Subsequent layers handle point of interest identification and selection, trail network optimization through proximity graphs, and efficient pathfinding across the terrain. A notable feature of our approach is the deterministic nature …


An Open Guide To Data Structures And Algorithms, Paul W. Bible, Lucas Moser Oct 2023

An Open Guide To Data Structures And Algorithms, Paul W. Bible, Lucas Moser

Computer Science Faculty publications

This textbook serves as a gentle introduction for undergraduates to theoretical concepts in data structures and algorithms in computer science while providing coverage of practical implementation (coding) issues. The field of computer science (CS) supports a multitude of essential technologies in science, engineering, and communication as a social medium. The varied and interconnected nature of computer technology permeates countless career paths making CS a popular and growing major program. Mastery of the science behind computer science relies on an understanding of the theory of algorithms and data structures. These concepts underlie the fundamental tradeoffs that dictate performance in terms of …


How I Read An Article That Uses Machine Learning Methods, Aziz Nazha, Olivier Elemento, Shannon Mcweeney, Moses Miles, Torsten Haferlach Aug 2023

How I Read An Article That Uses Machine Learning Methods, Aziz Nazha, Olivier Elemento, Shannon Mcweeney, Moses Miles, Torsten Haferlach

Kimmel Cancer Center Faculty Papers

No abstract provided.


Regulating Machine Learning: The Challenge Of Heterogeneity, Cary Coglianese Feb 2023

Regulating Machine Learning: The Challenge Of Heterogeneity, Cary Coglianese

All Faculty Scholarship

Machine learning, or artificial intelligence, refers to a vast array of different algorithms that are being put to highly varied uses, including in transportation, medicine, social media, marketing, and many other settings. Not only do machine-learning algorithms vary widely across their types and uses, but they are evolving constantly. Even the same algorithm can perform quite differently over time as it is fed new data. Due to the staggering heterogeneity of these algorithms, multiple regulatory agencies will be needed to regulate the use of machine learning, each within their own discrete area of specialization. Even these specialized expert agencies, though, …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


A Hybrid Deep Learning Approach For Crude Oil Price Prediction, Hind Aldabagh, Xianrong Zheng, Ravi Mukkamala Jan 2023

A Hybrid Deep Learning Approach For Crude Oil Price Prediction, Hind Aldabagh, Xianrong Zheng, Ravi Mukkamala

Computer Science Faculty Publications

Crude oil is one of the world’s most important commodities. Its price can affect the global economy, as well as the economies of importing and exporting countries. As a result, forecasting the price of crude oil is essential for investors. However, crude oil price tends to fluctuate considerably during significant world events, such as the COVID-19 pandemic and geopolitical conflicts. In this paper, we propose a deep learning model for forecasting the crude oil price of one-step and multi-step ahead. The model extracts important features that impact crude oil prices and uses them to predict future prices. The prediction model …


Machine-Learning-Based Vulnerability Detection And Classification In Internet Of Things Device Security, Sarah Bin Hulayyil, Shancang Li, Li Da Xu Jan 2023

Machine-Learning-Based Vulnerability Detection And Classification In Internet Of Things Device Security, Sarah Bin Hulayyil, Shancang Li, Li Da Xu

Information Technology & Decision Sciences Faculty Publications

Detecting cyber security vulnerabilities in the Internet of Things (IoT) devices before they are exploited is increasingly challenging and is one of the key technologies to protect IoT devices from cyber attacks. This work conducts a comprehensive survey to investigate the methods and tools used in vulnerability detection in IoT environments utilizing machine learning techniques on various datasets, i.e., IoT23. During this study, the common potential vulnerabilities of IoT architectures are analyzed on each layer and the machine learning workflow is described for detecting IoT vulnerabilities. A vulnerability detection and mitigation framework was proposed for machine learning-based vulnerability detection in …


Joint Congestion And Contention Avoidance In A Scalable Qos-Aware Opportunistic Routing In Wireless Ad-Hoc Networks, Ali Parsa, Neda Moghim, Sasan Haghani Jan 2023

Joint Congestion And Contention Avoidance In A Scalable Qos-Aware Opportunistic Routing In Wireless Ad-Hoc Networks, Ali Parsa, Neda Moghim, Sasan Haghani

VMASC Publications

Opportunistic routing (OR) can greatly increase transmission reliability and network throughput in wireless ad-hoc networks by taking advantage of the broadcast nature of the wireless medium. However, network congestion is a barrier in the way of OR's performance improvement, and network congestion control is a challenge in OR algorithms, because only the pure physical channel conditions of the links are considered in forwarding decisions. This paper proposes a new method to control network congestion in OR, considering three types of parameters, namely, the backlogged traffic, the traffic flows' Quality of Service (QoS) level, and the channel occupancy rate. Simulation results …


Detecting Deceptive Dark-Pattern Web Advertisements For Blind Screen-Reader Users, Satwick Ram Kodandaram, Mohan Sunkara, Sampath Jayarathna, Vikas Ashok Jan 2023

Detecting Deceptive Dark-Pattern Web Advertisements For Blind Screen-Reader Users, Satwick Ram Kodandaram, Mohan Sunkara, Sampath Jayarathna, Vikas Ashok

Computer Science Faculty Publications

Advertisements have become commonplace on modern websites. While ads are typically designed for visual consumption, it is unclear how they affect blind users who interact with the ads using a screen reader. Existing research studies on non-visual web interaction predominantly focus on general web browsing; the specific impact of extraneous ad content on blind users' experience remains largely unexplored. To fill this gap, we conducted an interview study with 18 blind participants; we found that blind users are often deceived by ads that contextually blend in with the surrounding web page content. While ad blockers can address this problem via …


Unttangling Irregular Actin Cytoskeleton Architectures In Tomograms Of The Cell With Struwwel Tracer, Salim Sazzed, Peter Scheible, Jing He, Willy Wriggers Jan 2023

Unttangling Irregular Actin Cytoskeleton Architectures In Tomograms Of The Cell With Struwwel Tracer, Salim Sazzed, Peter Scheible, Jing He, Willy Wriggers

Computer Science Faculty Publications

In this work, we established, validated, and optimized a novel computational framework for tracing arbitrarily oriented actin filaments in cryo-electron tomography maps. Our approach was designed for highly complex intracellular architectures in which a long-range cytoskeleton network extends throughout the cell bodies and protrusions. The irregular organization of the actin network, as well as cryo-electron-tomography-specific noise, missing wedge artifacts, and map dimensions call for a specialized implementation that is both robust and efficient. Our proposed solution, Struwwel Tracer, accumulates densities along paths of a specific length in various directions, starting from locally determined seed points. The highest-density paths originating …


Relation Preserving Triplet Mining For Stabilising The Triplet Loss In Re-Identification Systems, Adhiraj Ghosh, Kuruparan Shanmugalingam, Wen-Yan Lin Jan 2023

Relation Preserving Triplet Mining For Stabilising The Triplet Loss In Re-Identification Systems, Adhiraj Ghosh, Kuruparan Shanmugalingam, Wen-Yan Lin

Research Collection School Of Computing and Information Systems

Object appearances change dramatically with pose variations. This creates a challenge for embedding schemes that seek to map instances with the same object ID to locations that are as close as possible. This issue becomes significantly heightened in complex computer vision tasks such as re-identification(reID). In this paper, we suggest that these dramatic appearance changes are indications that an object ID is composed of multiple natural groups, and it is counterproductive to forcefully map instances from different groups to a common location. This leads us to introduce Relation Preserving Triplet Mining (RPTM), a feature matching guided triplet mining scheme, that …


Adaptive Resolution Loss: An Efficient And Effective Loss For Time Series Self-Supervised Learning Framework, Kevin Garcia, Juan Manuel Perez, Yifeng Gao Jan 2023

Adaptive Resolution Loss: An Efficient And Effective Loss For Time Series Self-Supervised Learning Framework, Kevin Garcia, Juan Manuel Perez, Yifeng Gao

Computer Science Faculty Publications and Presentations

Time series data is a crucial form of information that has vast opportunities. With the widespread use of sensor networks, largescale time series data has become ubiquitous. One of the most prominent problems in time series data mining is representation learning. Recently, with the introduction of self-supervised learning frameworks (SSL), numerous amounts of research have focused on designing an effective SSL for time series data. One of the current state-of-the-art SSL frameworks in time series is called TS2Vec. TS2Vec specially designs a hierarchical contrastive learning framework that uses loss-based training, which performs outstandingly against benchmark testing. However, the computational cost …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …