Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Physical Sciences and Mathematics

Evaluating The Resiliency Of Industrial Internet Of Things Process Control Using Protocol Agnostic Attacks, Hector L. Roldan Dec 2019

Evaluating The Resiliency Of Industrial Internet Of Things Process Control Using Protocol Agnostic Attacks, Hector L. Roldan

Theses and Dissertations

Improving and defending our nation's critical infrastructure has been a challenge for quite some time. A malfunctioning or stoppage of any one of these systems could result in hazardous conditions on its supporting populace leading to widespread damage, injury, and even death. The protection of such systems has been mandated by the Office of the President of the United States of America in Presidential Policy Directive Order 21. Current research now focuses on securing and improving the management and efficiency of Industrial Control Systems (ICS). IIoT promises a solution in enhancement of efficiency in ICS. However, the presence of IIoT …


Multiple Pursuer Multiple Evader Differential Games, Eloy Garcia, David Casbeer, Alexander Von Moll, Meir Pachter Nov 2019

Multiple Pursuer Multiple Evader Differential Games, Eloy Garcia, David Casbeer, Alexander Von Moll, Meir Pachter

Faculty Publications

In this paper an N-pursuer vs. M-evader team conflict is studied. The differential game of border defense is addressed and we focus on the game of degree in the region of the state space where the pursuers are able to win. This work extends classical differential game theory to simultaneously address weapon assignments and multi-player pursuit-evasion scenarios. Saddle-point strategies that provide guaranteed performance for each team regardless of the actual strategies implemented by the opponent are devised. The players' optimal strategies require the co-design of cooperative optimal assignments and optimal guidance laws. A representative measure of performance is proposed and …


Emergent Behavior Development And Control In Multi-Agent Systems, David W. King Aug 2019

Emergent Behavior Development And Control In Multi-Agent Systems, David W. King

Theses and Dissertations

Emergence in natural systems is the development of complex behaviors that result from the aggregation of simple agent-to-agent and agent-to-environment interactions. Emergence research intersects with many disciplines such as physics, biology, and ecology and provides a theoretical framework for investigating how order appears to spontaneously arise in complex adaptive systems. In biological systems, emergent behaviors allow simple agents to collectively accomplish multiple tasks in highly dynamic environments; ensuring system survival. These systems all display similar properties: self-organized hierarchies, robustness, adaptability, and decentralized task execution. However, current algorithmic approaches merely present theoretical models without showing how these models actually create hierarchical, …


Improving Optimization Of Convolutional Neural Networks Through Parameter Fine-Tuning, Nicholas C. Becherer, John M. Pecarina, Scott L. Nykl, Kenneth M. Hopkinson Aug 2019

Improving Optimization Of Convolutional Neural Networks Through Parameter Fine-Tuning, Nicholas C. Becherer, John M. Pecarina, Scott L. Nykl, Kenneth M. Hopkinson

Faculty Publications

In recent years, convolutional neural networks have achieved state-of-the-art performance in a number of computer vision problems such as image classification. Prior research has shown that a transfer learning technique known as parameter fine-tuning wherein a network is pre-trained on a different dataset can boost the performance of these networks. However, the topic of identifying the best source dataset and learning strategy for a given target domain is largely unexplored. Thus, this research presents and evaluates various transfer learning methods for fine-grained image classification as well as the effect on ensemble networks. The results clearly demonstrate the effectiveness of parameter …


The Trust-Based Interactive Partially Observable Markov Decision Process, Richard S. Seymour Jun 2019

The Trust-Based Interactive Partially Observable Markov Decision Process, Richard S. Seymour

Theses and Dissertations

Cooperative agent and robot systems are designed so that each is working toward the same common good. The problem is that the software systems are extremely complex and can be subverted by an adversary to either break the system or potentially worse, create sneaky agents who are willing to cooperate when the stakes are low and take selfish, greedy actions when the rewards rise. This research focuses on the ability of a group of agents to reason about the trustworthiness of each other and make decisions about whether to cooperate. A trust-based interactive partially observable Markov decision process (TI-POMDP) is …


Methodology For Comparison Of Algorithms For Real-World Multi-Objective Optimization Problems: Space Surveillance Network Design, Troy B. Dontigney Jun 2019

Methodology For Comparison Of Algorithms For Real-World Multi-Objective Optimization Problems: Space Surveillance Network Design, Troy B. Dontigney

Theses and Dissertations

Space Situational Awareness (SSA) is an activity vital to protecting national and commercial satellites from damage or destruction due to collisions. Recent research has demonstrated a methodology using evolutionary algorithms (EAs) which is intended to develop near-optimal Space Surveillance Network (SSN) architectures in the sense of low cost, low latency, and high resolution. That research is extended here by (1) developing and applying a methodology to compare the performance of two or more algorithms against this problem, and (2) analyzing the effects of using reduced data sets in those searches. Computational experiments are presented in which the performance of five …


Testing The Fault Tolerance Of A Wide Area Backup Protection System Using Spin, Kenneth James Mar 2019

Testing The Fault Tolerance Of A Wide Area Backup Protection System Using Spin, Kenneth James

Theses and Dissertations

Cyber-physical systems are increasingly prevalent in daily life. Smart grids in particular are becoming more interconnected and autonomously operated. Despite the advantages, new challenges arise in the form of defending these assets. Recent studies reveal that small-scale, coordinated cyber-attacks on only a few substations across the U.S. could result in cascading failures affecting the entire nation. In support of defending critical infrastructure, this thesis tests the fault tolerance of a backup protection system. Each transmission line in the system incorporates autonomous agents which monitor the status of the line and make decisions regarding the safety of the grid. Various malfunctions …


Instantaneous Bandwidth Expansion Using Software Defined Radios, Nicholas D. Everett Mar 2019

Instantaneous Bandwidth Expansion Using Software Defined Radios, Nicholas D. Everett

Theses and Dissertations

The Stimulated Unintended Radiated Emissions (SURE) process has been proven capable of classifying a device (e.g. a loaded antenna) as either operational or defective. Currently, the SURE process utilizes a specialized noise radar which is bulky, expensive and not easily supported. With current technology advancements, Software Defined Radios (SDRs) have become more compact, more readily available and significantly cheaper. The research here examines whether multiple SDRs can be integrated to replace the current specialized ultra-wideband noise radar used with the SURE process. The research specifically targets whether or not multiple SDR sub-band collections can be combined to form a wider …


The Effect Of Modeling Simultaneous Events On Simulation Results, John M. Carboni Mar 2019

The Effect Of Modeling Simultaneous Events On Simulation Results, John M. Carboni

Theses and Dissertations

This thesis explores the method that governs the prioritizing process for simultaneous events in relation to simulation results for discrete-event simulations. Specifically, it contrasts typical discrete-event simulation (DES) execution algorithms with how events are selected and ordered by the discrete-event system specification (DEVS) formalism. The motivation for this research stems from a desire to understand how the selection of events affects simulation output (i.e., response). As a particular use case, we briefly investigate the processing of simultaneous events by the Advanced Framework for Simulation, Integration and Modeling (AFSIM), a military discrete-event combat modeling and simulation package. To facilitate the building …


Confidence Inference In Defensive Cyber Operator Decision Making, Graig S. Ganitano Mar 2019

Confidence Inference In Defensive Cyber Operator Decision Making, Graig S. Ganitano

Theses and Dissertations

Cyber defense analysts face the challenge of validating machine generated alerts regarding network-based security threats. Operations tempo and systematic manpower issues have increased the importance of these individual analyst decisions, since they typically are not reviewed or changed. Analysts may not always be confident in their decisions. If confidence can be accurately assessed, then analyst decisions made under low confidence can be independently reviewed and analysts can be offered decision assistance or additional training. This work investigates the utility of using neurophysiological and behavioral correlates of decision confidence to train machine learning models to infer confidence in analyst decisions. Electroencephalography …


Evaluating Machine Learning Techniques For Smart Home Device Classification, Angelito E. Aragon Jr. Mar 2019

Evaluating Machine Learning Techniques For Smart Home Device Classification, Angelito E. Aragon Jr.

Theses and Dissertations

Smart devices in the Internet of Things (IoT) have transformed the management of personal and industrial spaces. Leveraging inexpensive computing, smart devices enable remote sensing and automated control over a diverse range of processes. Even as IoT devices provide numerous benefits, it is vital that their emerging security implications are studied. IoT device design typically focuses on cost efficiency and time to market, leading to limited built-in encryption, questionable supply chains, and poor data security. In a 2017 report, the United States Government Accountability Office recommended that the Department of Defense investigate the risks IoT devices pose to operations security, …


A Generalized Phase Gradient Autofocus Algorithm, Aaron Evers Mar 2019

A Generalized Phase Gradient Autofocus Algorithm, Aaron Evers

Theses and Dissertations

The phase gradient autofocus (PGA) algorithm has seen widespread use and success within the synthetic aperture radar (SAR) imaging community. However, its use and success has largely been limited to collection geometries where either the polar format algorithm (PFA) or range migration algorithm is suitable for SAR image formation. In this work, a generalized phase gradient autofocus (GPGA) algorithm is developed which is applicable with both the PFA and backprojection algorithm (BPA), thereby directly supporting a wide range of collection geometries and SAR imaging modalities. The GPGA algorithm preserves the four crucial signal processing steps comprising the PGA algorithm, while …


Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette Mar 2019

Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette

Theses and Dissertations

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers -- the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via …


Near Real-Time Rf-Dna Fingerprinting For Zigbee Devices Using Software Defined Radios, Frankie A. Cruz Mar 2019

Near Real-Time Rf-Dna Fingerprinting For Zigbee Devices Using Software Defined Radios, Frankie A. Cruz

Theses and Dissertations

Low-Rate Wireless Personal Area Network(s) (LR-WPAN) usage has increased as more consumers embrace Internet of Things (IoT) devices. ZigBee Physical Layer (PHY) is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 specification designed to provide a low-cost, low-power, and low-complexity solution for Wireless Sensor Network(s) (WSN). The standard’s extended battery life and reliability makes ZigBee WSN a popular choice for home automation, transportation, traffic management, Industrial Control Systems (ICS), and cyber-physical systems. As robust and versatile as the standard is, ZigBee remains vulnerable to a myriad of common network attacks. Previous research involving Radio Frequency-Distinct Native Attribute …


Unguided Cyber Education Techniques Of The Non-Expert, Seth A. Martin Mar 2019

Unguided Cyber Education Techniques Of The Non-Expert, Seth A. Martin

Theses and Dissertations

The United States Air Force and Department of Defense continues to rely on its total workforce to provide the first layer of protection against cyber intrusion. Prior research has shown that the workforce is not adequately educated to perform this task. As a result, DoD cybersecurity strategy now includes attempting to improve education and training on cyber-related concepts and technical skills to all users of DoD networks. This paper describes an experiment designed to understand the broad methods that non-expert users may use to educate themselves on how to perform technical tasks. Preliminary results informed subsequent experiments that directly compared …


A Blockchain-Based Anomalous Detection System For Internet Of Things Devices, Joshua K. Mosby Mar 2019

A Blockchain-Based Anomalous Detection System For Internet Of Things Devices, Joshua K. Mosby

Theses and Dissertations

Internet of Things devices are highly susceptible to attack, and owners often fail to realize they have been compromised. This thesis describes an anomalous-based intrusion detection system that operates directly on Internet of Things devices utilizing a custom-built Blockchain. In this approach, an agent on each node compares the node's behavior to that of its peers, generating an alert if they are behaving differently. An experiment is conducted to determine the effectiveness at detecting malware. Three different code samples simulating common malware are deployed against a testbed of 12 Raspberry Pi devices. Increasing numbers are infected until two-thirds of the …


Two-On-One Pursuit With A Non-Zero Capture Radius, Patrick J. Wasz Mar 2019

Two-On-One Pursuit With A Non-Zero Capture Radius, Patrick J. Wasz

Theses and Dissertations

In this paper, we revisit the "Two Cutters and Fugitive Ship" differential game that was addressed by Isaacs, but move away from point capture. We consider a two-on-one pursuit-evasion differential game with simple motion and pursuers endowed with circular capture sets of radius l > 0. The regions in the state space where only one pursuer effects the capture and the region in the state space where both pursuers cooperatively and isochronously capture the evader are characterized, thus solving the Game of Kind. Concerning the Game of Degree, the algorithm for the synthesis of the optimal state feedback strategies of the …


Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber Mar 2019

Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber

Theses and Dissertations

Radiofrequency (RF) interference threatens the functionality of systems that increasingly underpin the daily function of modern society. In recent years there have been multiple incidents of intentional RF spectrum denial using terrestrial interference sources. Because RF based systems are used in safety-of-life applications in both military and civilian contexts, there is need for systems that can quickly locate these interference sources. In order to meet this need, the Air Force Research Laboratory Weapons Directorate is sponsoring the following research to support systems that will be able to quickly geolocate RF interferers using passive angle-of-arrival estimation to triangulate interference sources. This …


Non-Contact Height Estimation For Material Extrusion Additive Systems Via Monocular Imagery, Andrew C. Gorospe Mar 2019

Non-Contact Height Estimation For Material Extrusion Additive Systems Via Monocular Imagery, Andrew C. Gorospe

Theses and Dissertations

Additive manufacturing is a dynamic technology with a compelling potential to advance the manufacturing industry. Despite its capacity to produce intricate designs in an efficient manner, industry still has not widely adopted additive manufacturing since its commercialization as a result of its many challenges related to quality control. The Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Functional Materials Division, Soft Matter Materials Branch (RXAS) requires a practical and reliable method for maintaining quality control for the production of printed flexible electronics. Height estimation is a crucial component for maintaining quality control in Material Extrusion Additive Manufacturing (MEAM), as …


Imitating Human Responses Via A Dual-Process Model Approach, Matthew A. Grimm Mar 2019

Imitating Human Responses Via A Dual-Process Model Approach, Matthew A. Grimm

Theses and Dissertations

Human-autonomous system teaming is becoming more prevalent in the Air Force and in society. Often, the concept of a shared mental model is discussed as a means to enhance collaborative work arrangements between a human and an autonomous system. The idea being that when the models are aligned, the team is more productive due to an increase in trust, predictability, and apparent understanding. This research presents the Dual-Process Model using multivariate normal probability density functions (DPM-MN), which is a cognitive architecture algorithm based on the psychological dual-process theory. The dual-process theory proposes a bipartite decision-making process in people. It labels …


Preserving Privacy In Automotive Tire Pressure Monitoring Systems, Kenneth L. Hacker Mar 2019

Preserving Privacy In Automotive Tire Pressure Monitoring Systems, Kenneth L. Hacker

Theses and Dissertations

The automotive industry is moving towards a more connected ecosystem, with connectivity achieved through multiple wireless systems. However, in the pursuit of these technological advances and to quickly satisfy requirements imposed on manufacturers, the security of these systems is often an afterthought. It has been shown that systems in a standard new automobile that one would not expect to be vulnerable can be exploited for a variety of harmful effects. This thesis considers a seemingly benign, but government mandated, safety feature of modern vehicles; the Tire Pressure Monitoring System (TPMS). Typical implementations have no security-oriented features, leaking data that can …


Self Organized Multi Agent Swarms (Somas) For Network Security Control, Eric M. Holloway Mar 2019

Self Organized Multi Agent Swarms (Somas) For Network Security Control, Eric M. Holloway

Theses and Dissertations

Computer network security is a very serious concern in many commercial, industrial, and military environments. This paper proposes a new computer network security approach defined by self-organized agent swarms (SOMAS) which provides a novel computer network security management framework based upon desired overall system behaviors. The SOMAS structure evolves based upon the partially observable Markov decision process (POMDP) formal model and the more complex Interactive-POMDP and Decentralized-POMDP models, which are augmented with a new F(*-POMDP) model. Example swarm specific and network based behaviors are formalized and simulated. This paper illustrates through various statistical testing techniques, the significance of this proposed …


Near Earth Space Object Detection Using Parallax As Multi-Hypothesis Test Criterion, Joseph C. Tompkins, Stephen C. Cain, David J. Becker Feb 2019

Near Earth Space Object Detection Using Parallax As Multi-Hypothesis Test Criterion, Joseph C. Tompkins, Stephen C. Cain, David J. Becker

Faculty Publications

The US Strategic Command (USSTRATCOM) operated Space Surveillance Network (SSN) is tasked with Space Situational Awareness (SSA) for the U.S. military. This system is made up of Electro-Optic sensors, such as the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) and RADAR based sensors, such as the Space Fence Gaps. They remain in the tracking of Resident Space Objects (RSO’s) in Geosynchronous Orbits (GEO), due to limitations of SST and GEODSS system implementation. This research explores a reliable, ground-based technique used to quickly determine an RSO’s altitude from a single or limited set of observations. Implementation of such sensors into the SSN …


Improved N-Dimensional Data Visualization From Hyper-Radial Values, Todd J. Paciencia, Trevor J. Bihl, Kenneth W. Bauer Jan 2019

Improved N-Dimensional Data Visualization From Hyper-Radial Values, Todd J. Paciencia, Trevor J. Bihl, Kenneth W. Bauer

Faculty Publications

Higher-dimensional data, which is becoming common in many disciplines due to big data problems, are inherently difficult to visualize in a meaningful way. While many visualization methods exist, they are often difficult to interpret, involve multiple plots and overlaid points, or require simultaneous interpretations. This research adapts and extends hyper-radial visualization, a technique used to visualize Pareto fronts in multi-objective optimizations, to become an n-dimensional visualization tool. Hyper-radial visualization is seen to offer many advantages by presenting a low-dimensionality representation of data through easily understood calculations. First, hyper-radial visualization is extended for use with general multivariate data. Second, a method …


Developmental Test And Requirements Best Practices Of Successful Information Systems Efforts Using Agile Methods, Jeremy D. Kramer, Torrey J. Wagner Jan 2019

Developmental Test And Requirements Best Practices Of Successful Information Systems Efforts Using Agile Methods, Jeremy D. Kramer, Torrey J. Wagner

Faculty Publications

This article provides insights into the current state of developmental testing (DT) and requirements management in Department of Defense information systems employing Agile development. The authors describe the study methodology and provide an overview of Agile development and testing. Insights are described for requirements, detailed planning, test execution, and reporting. This work articulates best practices related to DT and requirements management strategies for programs employing modernized Software Development Life Cycle practices.