Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Regen: Optimizing Genetic Selection Algorithms For Heterogeneous Computing, Scott Kenneth Swinkleb Winkleblack Jun 2014

Regen: Optimizing Genetic Selection Algorithms For Heterogeneous Computing, Scott Kenneth Swinkleb Winkleblack

Master's Theses

GenSel is a genetic selection analysis tool used to determine which genetic markers are informational for a given trait. Performing genetic selection related analyses is a time consuming and computationally expensive task. Due to an expected increase in the number of genotyped individuals, analysis times will increase dramatically. Therefore, optimization efforts must be made to keep analysis times reasonable.

This thesis focuses on optimizing one of GenSel’s underlying algorithms for heterogeneous computing. The resulting algorithm exposes task-level parallelism and data-level parallelism present but inaccessible in the original algorithm. The heterogeneous computing solution, ReGen, outperforms the optimized CPU implementation achieving a …


Computational Methods For The Analysis Of Next Generation Sequencing Data, Wei Wang May 2014

Computational Methods For The Analysis Of Next Generation Sequencing Data, Wei Wang

Dissertations

Recently, next generation sequencing (NGS) technology has emerged as a powerful approach and dramatically transformed biomedical research in an unprecedented scale. NGS is expected to replace the traditional hybridization-based microarray technology because of its affordable cost and high digital resolution. Although NGS has significantly extended the ability to study the human genome and to better understand the biology of genomes, the new technology has required profound changes to the data analysis. There is a substantial need for computational methods that allow a convenient analysis of these overwhelmingly high-throughput data sets and address an increasing number of compelling biological questions which …


Algorithms And Tools For Computational Analysis Of Human Transcriptome Using Rna-Seq, Nan Deng Jan 2014

Algorithms And Tools For Computational Analysis Of Human Transcriptome Using Rna-Seq, Nan Deng

Wayne State University Dissertations

Alternative splicing plays a key role in regulating gene expression, and more than 90% of human genes are alternatively spliced through different types of alternative splicing. Dysregulated alternative splicing events have been linked to a number of human diseases. Recently, high-throughput RNA-Seq technologies have provided unprecedented opportunities to better characterize and understand transcriptomes, in particular useful for the detection of splicing variants between healthy and diseased human transcriptomes.

We have developed two novel algorithms and tools and a computational workflow to interrogate human transcriptomes between healthy and diseased conditions. The first is a read count-based Expectation-Maximization (EM) algorithm and tool, …


The Rna Newton Polytope And Learnability Of Energy Parameters, Elmirasadat Forouzmand Jan 2014

The Rna Newton Polytope And Learnability Of Energy Parameters, Elmirasadat Forouzmand

Wayne State University Theses

Computational RNA secondary structure prediction has been a topic of much research interest for several decades now. Despite all the progress made in the field, even the state-of-the-art algorithms do not provide satisfying results, and the accuracy of output is limited for all the existent tools. Very complex energy models, different parameter estimation methods, and recent machine learning approaches had not been the answer for this problem. We believe that the first step to achieve results with high quality is to use the energy model with the potential for predicting accurate output. Hence, it is necessary to have a systematic …


Random Forests Based Rule Learning And Feature Elimination, Sheng Liu Jan 2014

Random Forests Based Rule Learning And Feature Elimination, Sheng Liu

Electronic Theses and Dissertations

Much research combines data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. We propose an efficient approach, combining rule extraction and feature elimination, based on 1-norm regularized random forests. This approach simultaneously extracts a small number of rules generated by random forests and selects important features. To evaluate this approach, we have applied it to …