Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Bayesian Clustering By Dynamics, Marco Ramoni, Paola Sebastiani, Paul Cohen Jan 2001

Bayesian Clustering By Dynamics, Marco Ramoni, Paola Sebastiani, Paul Cohen

Computer Science Department Faculty Publication Series

This paper introduces a Bayesian method for clustering dynamic processes. The method models dynamics as Markov chains and then applies an agglomerative clustering procedure to discover the most probable set of clusters capturing different dynamics. To increase ef£ciency, the method uses an entropy-based heuristic search strategy. A controlled experiment suggests that the method is very accurate when applied to artificial time series in a broad range of conditions and, when applied to clustering sensor data from mobile robots, it produces clusters that are meaningful in the domain of application.


Wholes And Parts In General Systems Methodology, Martin Zwick Jan 2001

Wholes And Parts In General Systems Methodology, Martin Zwick

Systems Science Faculty Publications and Presentations

Reconstructability analysis (RA) decomposes wholes, namely data in the form either of set-theoretic relations or multivariate probability distributions, into parts, namely relations or distributions involving subsets of variables. Data is modeled and compressed by variablebased decomposition, by more general state-based decomposition, or by the use of latent variables. Models, which specify the interdependencies among the variables, are selected to minimize error and complexity.


Entropy Generation Method To Quantify Thermal Comfort, S. C. Boregowda, S. N. Tiwari, S. K. Chaturvedi Jan 2001

Entropy Generation Method To Quantify Thermal Comfort, S. C. Boregowda, S. N. Tiwari, S. K. Chaturvedi

Mechanical & Aerospace Engineering Faculty Publications

The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a …