Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Physical Sciences and Mathematics

External-Memory Dictionaries With Worst-Case Update Cost, Rathish Das, John Iacono, Yakov Nekrich Dec 2022

External-Memory Dictionaries With Worst-Case Update Cost, Rathish Das, John Iacono, Yakov Nekrich

Michigan Tech Publications

The Bϵ-tree [Brodal and Fagerberg 2003] is a simple I/O-efficient external-memory-model data structure that supports updates orders of magnitude faster than B-tree with a query performance comparable to the B-tree: for any positive constant ϵ < 1 insertions and deletions take O(B11-ϵ logB N) time (rather than O(logB N) time for the classic B-tree), queries take O(logB N) time and range queries returning k items take O(logB N + Bk) time. Although the Bϵ-tree has an optimal update/query tradeoff, the runtimes are amortized. Another structure, the write-optimized skip list, introduced by Bender et al. [PODS 2017], has the same performance as the Bϵ-tree but with runtimes that are randomized rather than amortized. In this paper, we present a variant of the Bϵ-tree with deterministic worst-case running times that are identical to the original’s amortized running times.


An Autoencoder-Based Deep Learning Method For Genotype Imputation, Meng Song, Jonathan Greenbaum, Joseph Luttrell, Weihua Zhou, Chong Wu, Zhe Luo, Chuan Qiu, Lan Juan Zhao, Kuan Jui Su, Qing Tian, Hui Shen, Huixiao Hong, Ping Gong, Xinghua Shi, Hong Wen Deng, Chaoyang Zhang Nov 2022

An Autoencoder-Based Deep Learning Method For Genotype Imputation, Meng Song, Jonathan Greenbaum, Joseph Luttrell, Weihua Zhou, Chong Wu, Zhe Luo, Chuan Qiu, Lan Juan Zhao, Kuan Jui Su, Qing Tian, Hui Shen, Huixiao Hong, Ping Gong, Xinghua Shi, Hong Wen Deng, Chaoyang Zhang

Michigan Tech Publications

Genotype imputation has a wide range of applications in genome-wide association study (GWAS), including increasing the statistical power of association tests, discovering trait-associated loci in meta-analyses, and prioritizing causal variants with fine-mapping. In recent years, deep learning (DL) based methods, such as sparse convolutional denoising autoencoder (SCDA), have been developed for genotype imputation. However, it remains a challenging task to optimize the learning process in DL-based methods to achieve high imputation accuracy. To address this challenge, we have developed a convolutional autoencoder (AE) model for genotype imputation and implemented a customized training loop by modifying the training process with a …


Mechatronics Bachelor Curriculum Development In Light Of Industry 4.0 Technology Needs: Contrasting Us And German University Curricula, Paniz Hazaveh, Aleksandr Sergeyev, Nathir Rawashdeh Nov 2022

Mechatronics Bachelor Curriculum Development In Light Of Industry 4.0 Technology Needs: Contrasting Us And German University Curricula, Paniz Hazaveh, Aleksandr Sergeyev, Nathir Rawashdeh

Michigan Tech Publications

This study compares Mechatronics bachelor curricula at universities in the United States of America and German universities. Mechatronics education is relatively new in the United States, but has been common in Germany for over a decade. With the multidisciplinary nature of technologies required by the 4’th industrial revolution, a.k.a. Industry 4.0, composing an appropriate Mechatronics curriculum becomes a challenge and an opportunity. This paper studies how Mechatronics education can address the future needs of industry, while building on a specific university’s strengths and industry links. We have also analyzed the new undergraduate Mechatronics program at Michigan Technological University (MTU) and …


Operation Of A Controllable Force-Sensing Industrial Pneumatic Parallel Gripper System, Brian Piechocki, Chelsey Spitzner, Namratha Karanam, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh Nov 2022

Operation Of A Controllable Force-Sensing Industrial Pneumatic Parallel Gripper System, Brian Piechocki, Chelsey Spitzner, Namratha Karanam, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh

Michigan Tech Publications

As part of the advanced programmable logic controllers (PLC) course at Michigan Tech, this class project was performed on a mechatronics system gifted by Donald Engineering, a Michigan-based supplier of industrial automation systems and components. This paper explores the functionality and application of a force-programmable and sensing pneumatic parallel gripper system. Force sensing is a critical part of many systems in modern automation systems. Applications such as prosthetics, robotic surgery, or basic manufacturing systems may rely on the ability to properly read and control forces applied to an object. This work evaluates the basic operation of the pneumatic force-sensing gripper …


A Smart Parallel Gripper Industrial Automation System For Measurement Of Gripped Work Piece Thickness, Erik Kocher, Chukwuemeka George Ochieze, Ahmat Oumar, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh Nov 2022

A Smart Parallel Gripper Industrial Automation System For Measurement Of Gripped Work Piece Thickness, Erik Kocher, Chukwuemeka George Ochieze, Ahmat Oumar, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh

Michigan Tech Publications

As part of the advanced programmable logic controllers (PLC) course at Michigan Tech, this class project is performed on a mechatronics system gifted by Donald Engineering, a Michigan-based supplier of industrial automation systems and components. This paper explores the functionality and ladder programming of the smart parallel gripper system to measure the width of components grasped with the gripper. In addition, details of the system’s components, operation, more advanced uses are discussed. On the automation line, this smart gripper can be used to measure the thickness of work pieces while handling them and classifying these as either acceptable, too large …


Gesture Controlled Collaborative Robot Arm And Lab Kit, Abel A. Reyes, Skylar Reinhardt, Tony Wise, Nathir Rawashdeh, Sidike Paheding Nov 2022

Gesture Controlled Collaborative Robot Arm And Lab Kit, Abel A. Reyes, Skylar Reinhardt, Tony Wise, Nathir Rawashdeh, Sidike Paheding

Michigan Tech Publications

In this paper, a mechatronics system was designed and implemented to include the subjects of artificial intelligence, control algorithms, robot servo motor control, and human-machine interface (HMI). The goal was to create an inexpensive, multi-functional robotics lab kit to promote students’ interest in STEM fields including computing and mechtronics. Industrial robotic systems have become vastly popular in manufacturing and other industries, and the demand for individuals with related skills is rapidly increasing. Robots can complete jobs that are dangerous, dull, or dirty for humans to perform. Recently, more and more collaborative robotic systems have been developed and implemented in the …


An Industrial Pneumatic And Servo Four-Axis Robotic Gripper System: Description And Unitronics Ladder Logic Programming, Zongguang Liu, Chrispin Johnston, Aleksi Leino, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh Nov 2022

An Industrial Pneumatic And Servo Four-Axis Robotic Gripper System: Description And Unitronics Ladder Logic Programming, Zongguang Liu, Chrispin Johnston, Aleksi Leino, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh

Michigan Tech Publications

As part of the advanced programmable logic controllers (PLC) course at Michigan Tech, this class project is performed on a mechatronics system gifted by Donald Engineering, a Michigan-based supplier of industrial automation systems and components. This paper explores the functionality and ladder programming of a four-axis robot enclosed in a cage with one side guarded by an optical fence. The robot has pneumatically actuated X-Y linear motion and a pneumatic gripper. Furthermore, the Z-axis motion and gripper wrist rotation are controlled by servo motors. A human machine interface (HMI) is also present, and it allows for easy manipulation and programming …


Improving Protein Succinylation Sites Prediction Using Embeddings From Protein Language Model, Suresh Pokharel, Pawel Pratyush, Michael Heinzinger, Robert H. Newman, Dukka Kc Oct 2022

Improving Protein Succinylation Sites Prediction Using Embeddings From Protein Language Model, Suresh Pokharel, Pawel Pratyush, Michael Heinzinger, Robert H. Newman, Dukka Kc

Michigan Tech Publications

Protein succinylation is an important post-translational modification (PTM) responsible for many vital metabolic activities in cells, including cellular respiration, regulation, and repair. Here, we present a novel approach that combines features from supervised word embedding with embedding from a protein language model called ProtT5-XL-UniRef50 (hereafter termed, ProtT5) in a deep learning framework to predict protein succinylation sites. To our knowledge, this is one of the first attempts to employ embedding from a pre-trained protein language model to predict protein succinylation sites. The proposed model, dubbed LMSuccSite, achieves state-of-the-art results compared to existing methods, with performance scores of 0.36, 0.79, 0.79 …


Orthogonal Point Location And Rectangle Stabbing Queries In 3-D, Timothy M. Chan, Yakov Nekrich, Saladi Rahul, Konstantinos Tsakalidis Sep 2022

Orthogonal Point Location And Rectangle Stabbing Queries In 3-D, Timothy M. Chan, Yakov Nekrich, Saladi Rahul, Konstantinos Tsakalidis

Michigan Tech Publications

In this work, we present a collection of new results on two fundamental problems in geometric data structures: orthogonal point location and rectangle stabbing.• Orthogonal point location. We give the first linear-space data structure that sup- ports 3-d point location queries on n disjoint axis-aligned boxes with optimal O (log") query time in the (arithmetic) pointer machine model. This improves the previous 0 (\ogi/2 n^ bound of Rahul \SODA 201o|. We similarly obtain the first linear-space data structure in the I/O model with optimal query cost, and also the first linear-space data structure in the word HAM model with sub-logarithmic …


An Algorithm For Task Allocation And Planning For A Heterogeneous Multi-Robot System To Minimize The Last Task Completion Time, Abhishek Patil, Jungyun Bae, Myoungkuk Park Jul 2022

An Algorithm For Task Allocation And Planning For A Heterogeneous Multi-Robot System To Minimize The Last Task Completion Time, Abhishek Patil, Jungyun Bae, Myoungkuk Park

Michigan Tech Publications

This paper proposes an algorithm that provides operational strategies for multiple heterogeneous mobile robot systems utilized in many real-world applications, such as deliveries, surveillance, search and rescue, monitoring, and transportation. Specifically, the authors focus on developing an algorithm that solves a min-max multiple depot heterogeneous asymmetric traveling salesperson problem (MDHATSP). The algorithm is designed based on a primal-dual technique to operate given multiple heterogeneous robots located at distinctive depots by finding a tour for each robot such that all the given targets are visited by at least one robot while minimizing the last task completion time. Building on existing work, …


Assessment Of Sentinel-2 And Landsat-8 Oli For Small-Scale Inland Water Quality Modeling And Monitoring Based On Handheld Hyperspectral Ground Truthing, Qasem Abdel, Mohammed N. Assaf, Abdulla Al-Rawabdeh, Sameer Arabasi, Nathir A. Rawashdeh Jun 2022

Assessment Of Sentinel-2 And Landsat-8 Oli For Small-Scale Inland Water Quality Modeling And Monitoring Based On Handheld Hyperspectral Ground Truthing, Qasem Abdel, Mohammed N. Assaf, Abdulla Al-Rawabdeh, Sameer Arabasi, Nathir A. Rawashdeh

Michigan Tech Publications

This study investigates the best available methods for remote monitoring inland small-scale waterbodies, using remote sensing data from both Landsat-8 and Sentinel-2 satellites, utilizing a handheld hyperspectral device for ground truthing. Monitoring was conducted to evaluate water quality indicators: chlorophyll-a (Chl-a), colored dissolved organic matter (CDOM), and turbidity. Ground truthing was performed to select the most suitable atmospheric correction technique (ACT). Several ACT have been tested: dark spectrum fitting (DSF), dark object subtraction (DOS), atmospheric and topographic correction (ATCOR), and exponential extrapolation (EXP). Classical sampling was conducted first; then, the resulting concentrations were compared to those obtained using remote sensing …


A Mild Dyssynchronous Contraction Pattern Detected By Spect Myocardial Perfusion Imaging Predicts Super-Response To Cardiac Resynchronization Therapy, Xiao Hu, Zhiyong Qian, Fengwei Zou, Siyuan Xue, Xinwei Zhang, Yao Wang, Xiaofeng Hou, Weihua Zhou, Jiangang Zou May 2022

A Mild Dyssynchronous Contraction Pattern Detected By Spect Myocardial Perfusion Imaging Predicts Super-Response To Cardiac Resynchronization Therapy, Xiao Hu, Zhiyong Qian, Fengwei Zou, Siyuan Xue, Xinwei Zhang, Yao Wang, Xiaofeng Hou, Weihua Zhou, Jiangang Zou

Michigan Tech Publications

Background: Using single photon emission computed tomography myocardial perfusion imaging (SPECT MPI) with phase analysis (PA), we aimed to identify the predictive value of a new contraction pattern in cardiac resynchronization therapy (CRT) response. Methods: Left ventricular mechanical dyssynchrony (LVMD) was evaluated using SPECT MPI with PA in non-ischemic dilated cardiomyopathy (DCM) patients with left bundle branch block (LBBB) indicated for CRT. CRT super-response was defined as LV ejection fraction (EF) ≥50% or an absolute increase of LVEF >15%. The LV contraction was categorized as the mild dyssynchronous pattern when the phase standard deviation (PSD) ≤ 40.3° and phase histogram …


Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang May 2022

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang

Michigan Tech Publications

The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, …


Deep-Learning-Incorporated Augmented Reality Application For Engineering Lab Training, John Estrada, Sidike Paheding, Xiaoli Yang, Quamar Niyaz May 2022

Deep-Learning-Incorporated Augmented Reality Application For Engineering Lab Training, John Estrada, Sidike Paheding, Xiaoli Yang, Quamar Niyaz

Michigan Tech Publications

Deep learning (DL) algorithms have achieved significantly high performance in object detection tasks. At the same time, augmented reality (AR) techniques are transforming the ways that we work and connect with people. With the increasing popularity of online and hybrid learning, we propose a new framework for improving students’ learning experiences with electrical engineering lab equipment by incorporating the abovementioned technologies. The DL powered automatic object detection component integrated into the AR application is designed to recognize equipment such as multimeter, oscilloscope, wave generator, and power supply. A deep neural network model, namely MobileNet-SSD v2, is implemented for equipment detection …


A Few-Shot Learning Model Based On A Triplet Network For The Prediction Of Energy Coincident Peak Days, Jinxiang Liu, Laura Brown May 2022

A Few-Shot Learning Model Based On A Triplet Network For The Prediction Of Energy Coincident Peak Days, Jinxiang Liu, Laura Brown

Michigan Tech Publications

In an electricity system, a coincident peak (CP) is defined as the highest daily power demand in a year, which plays an important role in keeping the balance between power supply and its demand. Advanced information about the time of coincident peaks would be helpful for both utility companies and their customers. This work addresses the prediction of the five coincident peak days (5CP) in a year. We present a few-shot learning model to classify a day as a 5CP day or a non-5CP day 24-hours ahead. A triplet network is implemented for the 2-way-5-shot classifications on six different historical …


Einstein-Roscoe Regression For The Slag Viscosity Prediction Problem In Steelmaking, Hiroto Saigo, Dukka Kc, Noritaka Saito Apr 2022

Einstein-Roscoe Regression For The Slag Viscosity Prediction Problem In Steelmaking, Hiroto Saigo, Dukka Kc, Noritaka Saito

Michigan Tech Publications

In classical machine learning, regressors are trained without attempting to gain insight into the mechanism connecting inputs and outputs. Natural sciences, however, are interested in finding a robust interpretable function for the target phenomenon, that can return predictions even outside of the training domains. This paper focuses on viscosity prediction problem in steelmaking, and proposes Einstein-Roscoe regression (ERR), which learns the coefficients of the Einstein-Roscoe equation, and is able to extrapolate to unseen domains. Besides, it is often the case in the natural sciences that some measurements are unavailable or expensive than the others due to physical constraints. To this …


Jamming Detection And Classification In Ofdm-Based Uavs Via Feature- And Spectrogram-Tailored Machine Learning, Y. Li, J. Pawlak, J. Price, K. Al Shamaileh, Q. Niyaz, S. Paheding, V. Devabhaktuni Feb 2022

Jamming Detection And Classification In Ofdm-Based Uavs Via Feature- And Spectrogram-Tailored Machine Learning, Y. Li, J. Pawlak, J. Price, K. Al Shamaileh, Q. Niyaz, S. Paheding, V. Devabhaktuni

Michigan Tech Publications

In this paper, a machine learning (ML) approach is proposed to detect and classify jamming attacks against orthogonal frequency division multiplexing (OFDM) receivers with applications to unmanned aerial vehicles (UAVs). Using software-defined radio (SDR), four types of jamming attacks; namely, barrage, protocol-aware, single-tone, and successive-pulse are launched and investigated. Each type is qualitatively evaluated considering jamming range, launch complexity, and attack severity. Then, a systematic testing procedure is established by placing an SDR in the vicinity of a UAV (i.e., drone) to extract radiometric features before and after a jamming attack is launched. Numeric features that include signal-to-noise ratio (SNR), …