Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

A Dynamic Run-Profile Energy-Aware Approach For Scheduling Computationally Intensive Bioinformatics Applications, Sachin Pawaskar, Hesham Ali Jul 2016

A Dynamic Run-Profile Energy-Aware Approach For Scheduling Computationally Intensive Bioinformatics Applications, Sachin Pawaskar, Hesham Ali

Computer Science Faculty Proceedings & Presentations

High Performance Computing (HPC) resources are housed in large datacenters, which consume exorbitant amounts of energy and are quickly demanding attention from businesses as they result in high operating costs. On the other hand HPC environments have been very useful to researchers in many emerging areas in life sciences such as Bioinformatics and Medical Informatics. In an earlier work, we introduced a dynamic model for energy aware scheduling (EAS) in a HPC environment; the model is domain agnostic and incorporates both the deadline parameter as well as energy parameters for computationally intensive applications. Our proposed EAS model incorporates 2-phases. In …


Bioinformatics And Biomedical Engineering, Francisco Ortuño, Ignacio Rojas, Kathryn Dempsey Cooper, Sachin Pawaskar, Hesham Ali Jan 2015

Bioinformatics And Biomedical Engineering, Francisco Ortuño, Ignacio Rojas, Kathryn Dempsey Cooper, Sachin Pawaskar, Hesham Ali

Faculty Books and Monographs

Editors: Francisco Ortuño, Ignacio Rojas

Chapter, Identification of Biologically Significant Elements Using Correlation Networks in High Performance Computing Environments, co-authored by Kathryn Dempsey Cooper, Sachin Pawaskar, and Hesham Ali, UNO faculty members.

The two volume set LNCS 9043 and 9044 constitutes the refereed proceedings of the Third International Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2015, held in Granada, Spain in April 2015. The 134 papers presented were carefully reviewed and selected from 268 submissions. The scope of the conference spans the following areas: bioinformatics for healthcare and diseases, biomedical engineering, biomedical image analysis, biomedical signal analysis, computational genomics, computational …


Energy Awareness And Scheduling In Mobile Devices And High End Computing, Sachin S. Pawaskaw Jul 2013

Energy Awareness And Scheduling In Mobile Devices And High End Computing, Sachin S. Pawaskaw

Student Work

In the context of the big picture as energy demands rise due to growing economies and growing populations, there will be greater emphasis on sustainable supply, conservation, and efficient usage of this vital resource. Even at a smaller level, the need for minimizing energy consumption continues to be compelling in embedded, mobile, and server systems such as handheld devices, robots, spaceships, laptops, cluster servers, sensors, etc. This is due to the direct impact of constrained energy sources such as battery size and weight, as well as cooling expenses in cluster-based systems to reduce heat dissipation. Energy management therefore plays a …


A Noise Reducing Sampling Approach For Uncovering Critical Properties In Large Scale Biological Networks, Karthik Duraisamy, Kathryn Dempsey Cooper, Hesham Ali, Sanjukta Bhowmick Jan 2011

A Noise Reducing Sampling Approach For Uncovering Critical Properties In Large Scale Biological Networks, Karthik Duraisamy, Kathryn Dempsey Cooper, Hesham Ali, Sanjukta Bhowmick

Interdisciplinary Informatics Faculty Proceedings & Presentations

A correlation network is a graph-based representation of relationships among genes or gene products, such as proteins. The advent of high-throughput bioinformatics has resulted in the generation of volumes of data that require sophisticated in silico models, such as the correlation network, for in-depth analysis. Each element in our network represents expression levels of multiple samples of one gene and an edge connecting two nodes reflects the correlation level between the two corresponding genes in the network according to the Pearson correlation coefficient. Biological networks made in this manner are generally found to adhere to a scale-free structural nature, that …


A Dynamic Energy-Aware Model For Scheduling Computationally Intensive Bioinformatics Applications, Sachin Pawaskar, Hesham Ali Jul 2010

A Dynamic Energy-Aware Model For Scheduling Computationally Intensive Bioinformatics Applications, Sachin Pawaskar, Hesham Ali

Computer Science Faculty Proceedings & Presentations

High Performance Computing (HPC) resources are housed in large datacenters, which consume huge amounts of energy and are quickly demanding attention from businesses as they result in high operating costs. On the other hand HPC environments have been very useful to researchers in many emerging areas in life sciences such as Bioinformatics and Medical Informatics. In this paper, we provide a dynamic model for energy aware scheduling (EAS) in a HPC environment; we use a widely used bioinformatics tool named BLAT (BLAST-like alignment tool) running in a HPC environment as our case study. Our proposed EAS model incorporates 2-Phases: an …


On The Tradeoff Between Speedup And Energy Consumption In High Performance Computing – A Bioinformatics Case Study, Sachin Pawaskar, Hesham Ali Jan 2008

On The Tradeoff Between Speedup And Energy Consumption In High Performance Computing – A Bioinformatics Case Study, Sachin Pawaskar, Hesham Ali

Computer Science Faculty Proceedings & Presentations

High Performance Computing has been very useful to researchers in the Bioinformatics, Medical and related fields. The bioinformatics domain is rich in applications that require extracting useful information from very large and continuously growing sequence of databases. Automated techniques such as DNA sequencers, DNA microarrays & others are continually growing the dataset that is stored in large public databases such as GenBank and Protein DataBank. Most methods used for analyzing genetic/protein data have been found to be extremely computationally intensive, providing motivation for the use of powerful computers or systems with high throughput characteristics. In this paper, we provide a …