Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

A Practical Approach To Robotic Design For The Darpa Urban Challenge, Benjamin J. Patz, Yiannis Papelis, Remo Pillat, Gary Stein, Don Harper Jan 2008

A Practical Approach To Robotic Design For The Darpa Urban Challenge, Benjamin J. Patz, Yiannis Papelis, Remo Pillat, Gary Stein, Don Harper

VMASC Publications

This article presents a practical approach to engineering a robot to effectively navigate in an urban environment. Inherent in this approach is the use of relatively simple sensors, actuators, and processors to generate robot vision, intelligence, and planning. Sensor data are fused from multiple low-cost, two-dimensional laser scanners With an innovative rotational mount to provide three-dimensional coverage with image processing using both range and intensity data. Information is combined With Doppler radar returns to yield a world view processed by a context-based reasoning control system to yield tactical mission commands forwarded to traditional proportional-integral-derivative (PID) control loops. As an example …


Emergent Behavior In Massively-Deployed Sensor Networks, Ekaterina Shurkova, Ruzana Ishak, Stephan Olariu, Shaharuddin Salleh Jan 2008

Emergent Behavior In Massively-Deployed Sensor Networks, Ekaterina Shurkova, Ruzana Ishak, Stephan Olariu, Shaharuddin Salleh

Computer Science Faculty Publications

The phenomenal advances in MEMS and nanotechnology make it feasible to build small devices, referred to as sensors that are able to sense, compute and communicate over small distances. The massive deployment of these small devices raises the fascinating question of whether or not the sensors, as a collectivity, will display emergent behavior, just as living organisms do. In this work we report on a recent effort intended to observe emerging behavior of large groups of sensor nodes, like living cells demonstrate. Imagine a massive deployment of sensors that can be in two states "red" and "blue". At deployment time …


Efficient Corona Training Protocols For Sensor Networks, Alan A. Bertossi, Stephan Olariu, Cristina M. Pinotti Jan 2008

Efficient Corona Training Protocols For Sensor Networks, Alan A. Bertossi, Stephan Olariu, Cristina M. Pinotti

Computer Science Faculty Publications

Phenomenal advances in nano-technology and packaging have made it possible to develop miniaturized low-power devices that integrate sensing, special-purpose computing, and wireless communications capabilities. It is expected that these small devices, referred to as sensors, will be mass-produced and deployed, making their production cost negligible. Due to their small form factor and modest non-renewable energy budget, individual sensors are not expected to be GPS-enabled. Moreover, in most applications, exact geographic location is not necessary, and all that the individual sensors need is a coarse-grain location awareness. The task of acquiring such a coarse-grain location awareness is referred to as training. …


Creating Preservation-Ready Web Resources, Joan A. Smith, Michael L. Nelson Jan 2008

Creating Preservation-Ready Web Resources, Joan A. Smith, Michael L. Nelson

Computer Science Faculty Publications

There are innumerable departmental, community, and personal web sites worthy of long-term preservation but proportionally fewer archivists available to properly prepare and process such sites. We propose a simple model for such everyday web sites which takes advantage of the web server itself to help prepare the site's resources for preservation. This is accomplished by having metadata utilities analyze the resource at the time of dissemination. The web server responds to the archiving repository crawler by sending both the resource and the just-in-time generated metadata as a straight-forward XML-formatted response. We call this complex object (resource + metadata) a CRATE. …


Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray Jan 2008

Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for …


Vegetation Identification Based On Satellite Imagery, Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.) Jan 2008

Vegetation Identification Based On Satellite Imagery, Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.)

Electrical & Computer Engineering Faculty Publications

Automatic vegetation identification plays an important role in many applications including remote sensing and high performance flight simulations. This paper presents a method to automatically identify vegetation based upon satellite imagery. First, we utilize the ISODATA algorithm to cluster pixels in the images where the number of clusters is determined by the algorithm. We then apply morphological operations to the clustered images to smooth the boundaries between clusters and to fill holes inside clusters. After that, we compute six features for each cluster. These six features then go through a feature selection algorithm and three of them are determined to …