Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Energy Consumption Optimization Of Uav-Assisted Traffic Monitoring Scheme With Tiny Reinforcement Learning, Xiangjie Kong, Chenhao Ni, Gaohui Duan, Guojiang Shen, Yao Yang, Sajal K. Das Jan 2024

Energy Consumption Optimization Of Uav-Assisted Traffic Monitoring Scheme With Tiny Reinforcement Learning, Xiangjie Kong, Chenhao Ni, Gaohui Duan, Guojiang Shen, Yao Yang, Sajal K. Das

Computer Science Faculty Research & Creative Works

Unmanned Aerial Vehicles (UAVs) can capture pictures of road conditions in all directions and from different angles by carrying high-definition cameras, which helps gather relevant road data more effectively. However, due to their limited energy capacity, drones face challenges in performing related tasks for an extended period. Therefore, a crucial concern is how to plan the path of UAVs and minimize energy consumption. To address this problem, we propose a multi-agent deep deterministic policy gradient based (MADDPG) algorithm for UAV path planning (MAUP). Considering the energy consumption and memory usage of MAUP, we have conducted optimizations to reduce consumption on …


Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh Jan 2023

Personalizing Student Graduation Paths Using Expressed Student Interests, Nicolas Dobbins, Ali R. Hurson, Sahra Sedigh

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an intelligent recommendation approach to facilitate personalized education and help students in planning their path to graduation. The goal is to identify a path that aligns with a student's interests and career goals and approaches optimality with respect to one or more criteria, such as time-to-graduation or credit hours taken. The approach is illustrated and verified through application to undergraduate curricula at the Missouri University of Science and Technology.


Geo-Distributed Multi-Tier Workload Migration Over Multi-Timescale Electricity Markets, Sourav Kanti Addya, Anurag Satpathy, Bishakh Chandra Ghosh, Sandip Chakraborty, Soumya K. Ghosh, Sajal K. Das Jan 2023

Geo-Distributed Multi-Tier Workload Migration Over Multi-Timescale Electricity Markets, Sourav Kanti Addya, Anurag Satpathy, Bishakh Chandra Ghosh, Sandip Chakraborty, Soumya K. Ghosh, Sajal K. Das

Computer Science Faculty Research & Creative Works

Virtual machine (VM) migration enables cloud service providers (CSPs) to balance workload, perform zero-downtime maintenance, and reduce applications' power consumption and response time. Migrating a VM consumes energy at the source, destination, and backbone networks, i.e., intermediate routers and switches, especially in a Geo-distributed setting. In this context, we propose a VM migration model called Low Energy Application Workload Migration (LEAWM) aimed at reducing the per-bit migration cost in migrating VMs over Geo-distributed clouds. With a Geo-distributed cloud connected through multiple Internet Service Providers (ISPs), we develop an approach to find out the migration path across ISPs leading to the …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Mechanisms For Improving Information Quality In Smartphone Crowdsensing Systems, Francesco Restuccia Jan 2016

Mechanisms For Improving Information Quality In Smartphone Crowdsensing Systems, Francesco Restuccia

Doctoral Dissertations

"Given its potential for a large variety of real-life applications, smartphone crowdsensing has recently gained tremendous attention from the research community. Smartphone crowdsensing is a paradigm that allows ordinary citizens to participate in large-scale sensing surveys by using user-friendly applications installed in their smartphones. In this way, fine-grained sensing information is obtained from smartphone users without employing fixed and expensive infrastructure, and with negligible maintenance costs.

Existing smartphone sensing systems depend completely on the participants' willingness to submit up-to-date and accurate information regarding the events being monitored. Therefore, it becomes paramount to scalably and effectively determine, enforce, and optimize the …