Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Comparison Of Rl Algorithms For Learning To Learn Problems, Adolfo Gonzalez Iii Dec 2019

Comparison Of Rl Algorithms For Learning To Learn Problems, Adolfo Gonzalez Iii

Theses and Dissertations

Machine learning has been applied to many different problems successfully due to the expressiveness of neural networks and simplicity of first order optimization algorithms. The latter being a vital piece needed for training large neural networks efficiently. Many of these algorithms were produced with behavior produced by experiments and intuition. An interesting question that comes to mind is that rather than observing and then designing algorithms with beneficial behaviors, can these algorithms be learned through a reinforcement learning by modeling optimization as a game. This paper explores several reinforcement learning algorithms which are applied to learn policies suited for optimization.


Toward Self-Reconfigurable Parametric Systems: Reinforcement Learning Approach, Ting-Yu Mu Dec 2019

Toward Self-Reconfigurable Parametric Systems: Reinforcement Learning Approach, Ting-Yu Mu

Dissertations

For the ongoing advancement of the fields of Information Technology (IT) and Computer Science, machine learning-based approaches are utilized in different ways in order to solve the problems that belong to the Nondeterministic Polynomial time (NP)-hard complexity class or to approximate the problems if there is no known efficient way to find a solution. Problems that determine the proper set of reconfigurable parameters of parametric systems to obtain the near optimal performance are typically classified as NP-hard problems with no efficient mathematical models to obtain the best solutions. This body of work aims to advance the knowledge of machine learning …


Algebraic Neural Architecture Representation, Evolutionary Neural Architecture Search, And Novelty Search In Deep Reinforcement Learning, Ethan C. Jackson Jun 2019

Algebraic Neural Architecture Representation, Evolutionary Neural Architecture Search, And Novelty Search In Deep Reinforcement Learning, Ethan C. Jackson

Electronic Thesis and Dissertation Repository

Evolutionary algorithms have recently re-emerged as powerful tools for machine learning and artificial intelligence, especially when combined with advances in deep learning developed over the last decade. In contrast to the use of fixed architectures and rigid learning algorithms, we leveraged the open-endedness of evolutionary algorithms to make both theoretical and methodological contributions to deep reinforcement learning. This thesis explores and develops two major areas at the intersection of evolutionary algorithms and deep reinforcement learning: generative network architectures and behaviour-based optimization. Over three distinct contributions, both theoretical and experimental methods were applied to deliver a novel mathematical framework and experimental …


Using Reinforcement Learning In A Simulated Intelligent Tutoring System, Manohar Sai Jasti Jan 2019

Using Reinforcement Learning In A Simulated Intelligent Tutoring System, Manohar Sai Jasti

Graduate Research Theses & Dissertations

I used reinforcement learning to investigate which categories of hints are most efficient in an intelligent tutoring system for human anatomy. Efficiency is defined as minimizing the time it takes the student to learn the material. When a student gives a wrong answer, the tutor can give them a text hint, a diagrammatic hint, or a video clip. Each type of hint takes a different amount of time to deliver and takes the student a different amount of time to understand.

I built a simulator for the intelligent tutoring system to collect data from simulated students. I implemented reinforcement learning, …


Application Of Retrograde Analysis To Fighting Games, Kristen Yu Jan 2019

Application Of Retrograde Analysis To Fighting Games, Kristen Yu

Electronic Theses and Dissertations

With the advent of the fighting game AI competition, there has been recent interest in two-player fighting games. Monte-Carlo Tree-Search approaches currently dominate the competition, but it is unclear if this is the best approach for all fighting games. In this thesis we study the design of two-player fighting games and the consequences of the game design on the types of AI that should be used for playing the game, as well as formally define the state space that fighting games are based on. Additionally, we also characterize how AI can solve the game given a simultaneous action game model, …


Bridging Act-R And Project Malmo, Developing Models Of Behavior In Complex Environments, David M. Schwartz Jan 2019

Bridging Act-R And Project Malmo, Developing Models Of Behavior In Complex Environments, David M. Schwartz

Honors Theses

Cognitive architectures such as ACT-R provide a system for simulating the mind and human behavior. On their own they model decision making of an isolated agent. However, applying a cognitive architecture to a complex environment yields more interesting results about how people make decisions in more realistic scenarios. Furthermore, cognitive architectures enable researchers to study human behavior in dangerous tasks which cannot be tested because they would harm participants. Nonetheless, these architectures aren’t commonly applied to such environments as they don’t come with one. It is left to the researcher to develop a task environment for their model. The difficulty …


Regression Tree Construction For Reinforcement Learning Problems With A General Action Space, Anthony S. Bush Jr Jan 2019

Regression Tree Construction For Reinforcement Learning Problems With A General Action Space, Anthony S. Bush Jr

Electronic Theses and Dissertations

Part of the implementation of Reinforcement Learning is constructing a regression of values against states and actions and using that regression model to optimize over actions for a given state. One such common regression technique is that of a decision tree; or in the case of continuous input, a regression tree. In such a case, we fix the states and optimize over actions; however, standard regression trees do not easily optimize over a subset of the input variables\cite{Card1993}. The technique we propose in this thesis is a hybrid of regression trees and kernel regression. First, a regression tree splits over …