Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Selected Works

2015

Robustness

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen Cheng

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen Cheng

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen CHENG

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Lifetime Measurement In Large-Scale P2p Systems With Non-Stationary Arrivals, Xiaoming Wang, Zhongmei Yao, Yueping Zhang, Dmitri Loguinov Jan 2015

Robust Lifetime Measurement In Large-Scale P2p Systems With Non-Stationary Arrivals, Xiaoming Wang, Zhongmei Yao, Yueping Zhang, Dmitri Loguinov

Zhongmei Yao

Characterizing user churn has become an important topic in studying P2P networks, both in theoretical analysis and system design. Recent work has shown that direct sampling of user lifetimes may lead to certain bias (arising from missed peers and round-off inconsistencies) and proposed a technique that estimates lifetimes based on sampled residuals. In this paper, however, we show that under non-stationary arrivals, which are often present in real systems, residual-based sampling does not correctly reconstruct user lifetimes and suffers a varying degree of bias, which in some cases makes estimation completely impossible. We overcome this problem using two contributions: a …