Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

William & Mary

Undergraduate Honors Theses

2021

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Static And Dynamic Analysis In Cryptographic-Api Misuse Detection Of Mobile Application, Kunyang Li Dec 2021

Static And Dynamic Analysis In Cryptographic-Api Misuse Detection Of Mobile Application, Kunyang Li

Undergraduate Honors Theses

With Android devices becoming more advanced and gaining more popularity, the number of cryptographic-API misuses in mobile applications is escalating. Numerous snippets of code in Android are from Stack Overflow and over 90% of them contain several crypto-issues. Various crypto-misuse detectors come out aiming to report vulnerabilities of apps and better secure users’ privacy. These detectors can be broadly classified into two categories based on the analysis strategies employed to catch misuses – static analysis (i.e., by scanning the code base) and dynamic analysis (i.e., by executing the code). However, there are not enough research on comparing their underlying differences, …


Molecular Cluster Fragment Machine Learning Training Techniques To Predict Energetics Of Brown Carbon Aerosol Clusters, Emily E. Chappie May 2021

Molecular Cluster Fragment Machine Learning Training Techniques To Predict Energetics Of Brown Carbon Aerosol Clusters, Emily E. Chappie

Undergraduate Honors Theses

Density functional theory (DFT) has become a popular method for computational work involving larger molecular systems as it provides accuracy that rivals ab initio methods while lowering computational cost. Nevertheless, computational cost is still high for systems greater than ten atoms in size, preventing their application in modeling realistic atmospheric systems at the molecular level. Machine learning techniques, however, show promise as cost-effective tools in predicting chemical properties when properly trained. In the interest of furthering chemical machine learning in the field of atmospheric science, I have developed a training method for predicting cluster energetics of newly characterized nitrogen-based brown …


Scope: Building And Testing An Integrated Manual-Automated Event Extraction Tool For Online Text-Based Media Sources, Matthew Crittenden May 2021

Scope: Building And Testing An Integrated Manual-Automated Event Extraction Tool For Online Text-Based Media Sources, Matthew Crittenden

Undergraduate Honors Theses

Building on insights from two years of manually extracting events information from online news media, an interactive information extraction environment (IIEE) was developed. SCOPE, the Scientific Collection of Open-source Policy Evidence, is a Python Django-based tool divided across specialized modules for extracting structured events data from unstructured text. These modules are grouped into a flexible framework which enables the user to tailor the tool to meet their needs. Following principles of user-oriented learning for information extraction (IE), SCOPE offers an alternative approach to developing AI-assisted IE systems. In this piece, we detail the ongoing development of the SCOPE tool, present …


A Pain Free Nociceptor: Predicting Football Injuries With Machine Learning, Andrew Lyubovsky May 2021

A Pain Free Nociceptor: Predicting Football Injuries With Machine Learning, Andrew Lyubovsky

Undergraduate Honors Theses

Injuries are a significant aspect of every sport, with the ability to impact a player’s career and the success of a team in their season. As sensor data is able to pick up on a player’s physical state, recently it has been analyzed for its ability to predict player injuries. We inspect the predictive power of player stats, subjective player responses, GPS data, and training load data in forecasting game injuries from an NCAA American football team during the 2019 season. Data processing techniques are used to remove noise and decrease correlated data, and as large portions of the data …


Performance Implications Of Memory Affinity On Filesystem Caches In A Non-Uniform Memory Access Environment, Jacob Adams May 2021

Performance Implications Of Memory Affinity On Filesystem Caches In A Non-Uniform Memory Access Environment, Jacob Adams

Undergraduate Honors Theses

Non-Uniform Memory Access imposes unique challenges on every component of an operating system and the applications that run on it. One such component is the filesystem which, while not directly impacted by NUMA in most cases, typically has some form of cache whose performance is constrained by the latency and bandwidth of the memory that it is stored in. One such filesystem is ZFS, which contains its own custom caching system, known as the Adaptive Replacement Cache. This work looks at the impact of NUMA on this cache via sequential read operations, shows how current solutions intended to reduce this …