Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Physical Sciences and Mathematics

A New Cache Replacement Policy In Named Data Network Based On Fib Table Information, Mehran Hosseinzadeh, Neda Moghim, Samira Taheri, Nasrin Gholami Jan 2024

A New Cache Replacement Policy In Named Data Network Based On Fib Table Information, Mehran Hosseinzadeh, Neda Moghim, Samira Taheri, Nasrin Gholami

VMASC Publications

Named Data Network (NDN) is proposed for the Internet as an information-centric architecture. Content storing in the router’s cache plays a significant role in NDN. When a router’s cache becomes full, a cache replacement policy determines which content should be discarded for the new content storage. This paper proposes a new cache replacement policy called Discard of Fast Retrievable Content (DFRC). In DFRC, the retrieval time of the content is evaluated using the FIB table information, and the content with less retrieval time receives more discard priority. An impact weight is also used to involve both the grade of retrieval …


Research And Development Of Simulation Training Platform For Multi-Agent Collaborative Decision-Making, Cheng Cheng, Zhijie Chen, Ziming Guo, Ni Li Dec 2023

Research And Development Of Simulation Training Platform For Multi-Agent Collaborative Decision-Making, Cheng Cheng, Zhijie Chen, Ziming Guo, Ni Li

Journal of System Simulation

Abstract: Reinforcement learning simulation platform can be an interactive and training environment for reinforcement learning. In order to make the simulation platform compatible with the multi-agent reinforcement learning algorithms and meet the needs of simulation in military field, the similar processes in multi-agent reinforcement learning algorithms are refined and a unified interface is designed to embed and verify different types of deep reinforcement learning algorithms on the simulation platform and to optimize the back-end service of the simulation platform to accelerate the training process of the algorithm model. The experimental results show that, by unifing the interface, the simulation platform …


Intercell Dynamic Scheduling Method Based On Deep Reinforcement Learning, Jing Ni, Mengke Ma Nov 2023

Intercell Dynamic Scheduling Method Based On Deep Reinforcement Learning, Jing Ni, Mengke Ma

Journal of System Simulation

Abstract: In order to solve the intercell scheduling problem of dynamic arrival of machining tasks and realize adaptive scheduling in the complex and changeable environment of the intelligent factory, a scheduling method based on a deep Q network is proposed. A complex network with cells as nodes and workpiece intercell machining path as directed edges is constructed, and the degree value is introduced to define the state space with intercell scheduling characteristics. A compound scheduling rule composed of a workpiece layer, unit layer, and machine layer is designed, and hierarchical optimization makes the scheduling scheme more global. Since double deep …


Uav-Enabled Task Offloading Strategy For Vehicular Edge Computing Networks, Feng Hu, Haiyang Gu, Jun Lin Nov 2023

Uav-Enabled Task Offloading Strategy For Vehicular Edge Computing Networks, Feng Hu, Haiyang Gu, Jun Lin

Journal of System Simulation

Abstract: As intelligent vehicles are equipped with more and more sensors, the explosive growth of sensor data is generated, which brings severe challenges to vehicular communication and computing. In addition, the modern road presents a three-dimensional structure, and the system architecture of traditional vehicular networks cannot guarantee full coverage and seamless computing. A task offloading strategy for UAV-assisted and 6G-enabled (Sixth Generation) vehicular edge computing networks is proposed. Furthermore, a flexible and intelligent vehicular edge computing mode is composed by vehicles and UAVs, which provide three-dimensional edge computing services for delay-sensitive and computation-intensive vehicular tasks, and ensure timely processing and …


Imitative Generation Of Optimal Guidance Law Based On Reinforcement Learning, Zhengxuan Jia, Tingyu Lin, Yingying Xiao, Guoqiang Shi, Hao Wang, Bi Zeng, Yiming Ou, Pengpeng Zhao Nov 2023

Imitative Generation Of Optimal Guidance Law Based On Reinforcement Learning, Zhengxuan Jia, Tingyu Lin, Yingying Xiao, Guoqiang Shi, Hao Wang, Bi Zeng, Yiming Ou, Pengpeng Zhao

Journal of System Simulation

Abstract: Under the background of high-speed maneuvering target interception, an optimal guidance law generation method for head-on interception independent of target acceleration estimation is proposed based on deep reinforcement learning. In addition, its effectiveness is verified through simulation experiments. As the simulation results suggest, the proposed method successfully achieves head-on interception of high-speed maneuvering targets in 3D space and largely reduces the requirement for target estimation with strong uncertainty, and it is more applicable than the optimal control method.


Aircraft Assignment Method For Optimal Utilization Of Maintenance Intervals, Runxia Guo, Yifu Wang Sep 2023

Aircraft Assignment Method For Optimal Utilization Of Maintenance Intervals, Runxia Guo, Yifu Wang

Journal of System Simulation

Abstract: The aircraft assignment problem is studied from a maintenance assurance perspective. In order to ensure its continuous airworthiness, civil aircraft are required to perform maintenance tasks, i. e., scheduled inspections, at specified intervals. The scheduled inspection interval is usually controlled by the number of flight cycles (FC), flight hours (FH), or flight days (FD), whichever comes first. In order to make balanced use of the inspection interval, an aircraft assignment model for a given fleet size is developed to optimize the maintenance interval utilization, and it is solved by a reinforcement learning algorithm to minimize the variance of the …


Sim-To-Real Reinforcement Learning Framework For Autonomous Aerial Leaf Sampling, Ashraful Islam May 2023

Sim-To-Real Reinforcement Learning Framework For Autonomous Aerial Leaf Sampling, Ashraful Islam

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Using unmanned aerial systems (UAS) for leaf sampling is contributing to a better understanding of the influence of climate change on plant species, and the dynamics of forest ecology by studying hard-to-reach tree canopies. Currently, multiple skilled operators are required for UAS maneuvering and using the leaf sampling tool. This often limits sampling to only the canopy top or periphery. Sim-to-real reinforcement learning (RL) can be leveraged to tackle challenges in the autonomous operation of aerial leaf sampling in the changing environment of a tree canopy. However, trans- ferring an RL controller that is learned in simulation to real UAS …


Multi-Agent Cooperative Combat Simulation In Naval Battlefield With Reinforcement Learning, Ding Shi, Xuefeng Yan, Lina Gong, Jingxuan Zhang, Donghai Guan, Mingqiang Wei Apr 2023

Multi-Agent Cooperative Combat Simulation In Naval Battlefield With Reinforcement Learning, Ding Shi, Xuefeng Yan, Lina Gong, Jingxuan Zhang, Donghai Guan, Mingqiang Wei

Journal of System Simulation

Abstract: Due to the rapidly-changed situations of future naval battlefields, it is urgent to realize the high-quality combat simulation in naval battlefields based on artificial intelligence to comprehensively optimize and improve the combat effectiveness of our army and defeat the enemy. The collaboration of combat units is the key point and how to realize the balanced decision-making among multiple agents is the first task. Based on decoupling priority experience replay mechanism and attention mechanism, a multi-agent reinforcement learning-based cooperative combat simulation (MARL-CCSA) network is proposed. Based on the expert experience, a multi-scale reward function is designed, on which a naval …


Research On Unmanned Swarm Combat System Adaptive Evolution Model Simulation, Zhiqiang Li, Yuanlong Li, Laixiang Yin, Xiangping Ma Apr 2023

Research On Unmanned Swarm Combat System Adaptive Evolution Model Simulation, Zhiqiang Li, Yuanlong Li, Laixiang Yin, Xiangping Ma

Journal of System Simulation

Abstract: Aiming at the fact that the intelligent unmanned swarm combat system is mainly composed of large-scale combat individuals with limited behavioral capabilities and has limited ability to adapt to the changes of battlefield environment and combat opponents, a learning evolution method combining genetic algorithm and reinforcement learning is proposed to construct an individual-based unmanned bee colony combat system evolution model. To improve the adaptive evolution efficiency of bee colony combat system, an improved genetic algorithm is proposed to improve the learning and evolution speed of bee colony individuals by using individual-specific mutation optimization strategy. Simulation experiment on …


Dqn-Based Joint Scheduling Method Of Heterogeneous Tt&C Resources, Naiyang Xue, Dan Ding, Yutong Jia, Zhiqiang Wang, Yuan Liu Feb 2023

Dqn-Based Joint Scheduling Method Of Heterogeneous Tt&C Resources, Naiyang Xue, Dan Ding, Yutong Jia, Zhiqiang Wang, Yuan Liu

Journal of System Simulation

Abstract: Joint scheduling of heterogeneous TT&C resources as research object, a deep Q network (DQN) algorithm based on reinforcement learning is proposed. The characteristics of the joint scheduling problem of heterogeneous TT&C resources being fully analyzied and mathematical language being used to describe the constraints affecting the solution, a resource joint scheduling model is established. From the perspective of applying reinforcement learning, two neural networks with the same structure and the action selection strategies based onεgreedy algorithm are respectively designed after Markov decision process description, and DQN solution framework is established. The simulation results show that DQN-based heterogeneous …


Reinforcement-Learning-Based Adaptive Tracking Control For A Space Continuum Robot Based On Reinforcement Learning, Da Jiang, Zhiqin Cai, Zhongzhen Liu, Haijun Peng, Zhigang Wu Oct 2022

Reinforcement-Learning-Based Adaptive Tracking Control For A Space Continuum Robot Based On Reinforcement Learning, Da Jiang, Zhiqin Cai, Zhongzhen Liu, Haijun Peng, Zhigang Wu

Journal of System Simulation

Abstract: Aiming at the tracking control for three-arm space continuum robot in space active debris removal manipulation, an adaptive sliding mode control algorithm based on deep reinforcement learning is proposed. Through BP network, a data-driven dynamic model is developed as the predictive model to guide the reinforcement learning to adjust the sliding mode controller's parameters online, and finally realize a real-time tracking control. Simulation results show that the proposed data-driven predictive model can accurately predict the robot's dynamic characteristics with the relative error within ±1% to random trajectories. Compared with the fixed-parameter sliding mode controller, the proposed adaptive controller …


Learning To Play An Imperfect Information Card Game Using Reinforcement Learning, Buğra Kaan Demi̇rdöver, Ömer Baykal, Ferdanur Alpaslan Sep 2022

Learning To Play An Imperfect Information Card Game Using Reinforcement Learning, Buğra Kaan Demi̇rdöver, Ömer Baykal, Ferdanur Alpaslan

Turkish Journal of Electrical Engineering and Computer Sciences

Artificial intelligence and machine learning are widely popular in many areas. One of the most popular ones is gaming. Games are perfect testbeds for machine learning and artificial intelligence with various scenarios and types. This study aims to develop a self-learning intelligent agent to play the Hearts game. Hearts is one of the most popular trick-taking card games around the world. It is an imperfect information card game. In addition to having a huge state space, Hearts offers many extra challenges due to its nature. In order to ease the development process, the agent developed in the scope of this …


Application Of Improved Q Learning Algorithm In Job Shop Scheduling Problem, Yejian Zhao, Yanhong Wang, Jun Zhang, Hongxia Yu, Zhongda Tian Jun 2022

Application Of Improved Q Learning Algorithm In Job Shop Scheduling Problem, Yejian Zhao, Yanhong Wang, Jun Zhang, Hongxia Yu, Zhongda Tian

Journal of System Simulation

Abstract: Aiming at the job shop scheduling in a dynamic environment, a dynamic scheduling algorithm based on an improved Q learning algorithm and dispatching rules is proposed. The state space of the dynamic scheduling algorithm is described with the concept of "the urgency of remaining tasks" and a reward function with the purpose of "the higher the slack, the higher the penalty" is disigned. In view of the problem that the greedy strategy will select the sub-optimal actions in the later stage of learning, the traditional Q learning algorithm is improved by introducing an action selection strategy based on the …


Research On The Construction Method Of Simulation Evaluation Index Of Operation Effectiveness Operation Concept Traction, Ziwei Zhang, Liang Li, Zhiming Dong, Yifei Wang, Li Duan Mar 2022

Research On The Construction Method Of Simulation Evaluation Index Of Operation Effectiveness Operation Concept Traction, Ziwei Zhang, Liang Li, Zhiming Dong, Yifei Wang, Li Duan

Journal of System Simulation

Abstract: Agents are difficult to be directly modeled and simulated due to the complexity of their own interaction and learning behaviors. Aiming at the common problems in the discrete simulation of the agent, the event transfer mechanism of the discrete event system specification (DEVS) atomic model is applied to express the interaction and learning of an agent. Through the interaction mode of the agent, the transfer control of multi-state external events, the port connection mode, as well as the introduction of reinforcement learning event transfer representation, a discrete simulation construction method of the agent based on the DEVS atomic model …


Dqn-Based Path Planning Method And Simulation For Submarine And Warship In Naval Battlefield, Xiaodong Huang, Haitao Yuan, Bi Jing, Liu Tao Oct 2021

Dqn-Based Path Planning Method And Simulation For Submarine And Warship In Naval Battlefield, Xiaodong Huang, Haitao Yuan, Bi Jing, Liu Tao

Journal of System Simulation

Abstract: To realize multi-agent intelligent planning and target tracking in complex naval battlefield environment, the work focuses on agents (submarine or warship), and proposes a simulation method based on reinforcement learning algorithm called Deep Q Network (DQN). Two neural networks with the same structure and different parameters are designed to update real and predicted Q values for the convergence of value functions. An ε-greedy algorithm is proposed to design an action selection mechanism, and a reward function is designed for the naval battlefield environment to increase the update velocity and generalization ability of Learning with Experience Replay (LER). Simulation results …


Research On Experimental Method Of Joint Operation Simulation Based On Human-Machine Hybrid Intelligence, Ma Jun, Jingyu Yang, Wu Xi Oct 2021

Research On Experimental Method Of Joint Operation Simulation Based On Human-Machine Hybrid Intelligence, Ma Jun, Jingyu Yang, Wu Xi

Journal of System Simulation

Abstract: In view of the difficulties that the joint operation simulation experiment methods are mainly for guiding equipment evaluation and demonstration, which is difficult to effectively support the research of operation problems, a joint operation simulation experiment method based on human-machine hybrid intelligence is proposed. The classification, generation and accumulation process of the knowledge in joint operation simulation experiment are clarified. Through the detailed descriptions of experimental interaction process, experimental operation process, experimental driving mode, simulation operation mode, supporting system structure, etc., a joint operation simulation experiment framework based on man-machine hybrid intelligence is constructed. It provides a new method …


Study On Next-Generation Strategic Wargame System, Wu Xi, Xianglin Meng, Jingyu Yang Sep 2021

Study On Next-Generation Strategic Wargame System, Wu Xi, Xianglin Meng, Jingyu Yang

Journal of System Simulation

Abstract: Strategic wargame is an important support to the strategic decision. The research status and challenges of the strategic wargame are analyzed, and the influence of big data and artificial intelligence technology on the strategic wargame system is studied. The prospects and key technologies of the next-generation strategic wargame system are studied, including the construction of event association graph for strategic topics, generation of strategic decision sparse samples based on generative adversarial nets, gaming strategy learning of human-in-loop hybrid enhancement, and public opinion dissemination modeling technology based on social network. The development trend of the strategic wargame is proposed.


Self-Learning-Based Multiple Spacecraft Evasion Decision Making Simulation Under Sparse Reward Condition, Zhao Yu, Jifeng Guo, Yan Peng, Chengchao Bai Aug 2021

Self-Learning-Based Multiple Spacecraft Evasion Decision Making Simulation Under Sparse Reward Condition, Zhao Yu, Jifeng Guo, Yan Peng, Chengchao Bai

Journal of System Simulation

Abstract: In order to improve the ability of spacecraft formation to evade multiple interceptors, aiming at the low success rate of traditional procedural maneuver evasion, a multi-agent cooperative autonomous decision-making algorithm, which is based on deep reinforcement learning method, is proposed. Based on the actor-critic architecture, a multi-agent reinforcement learning algorithm is designed, in which a weighted linear fitting method is proposed to solve the reliability allocation problem of the self-learning system. To solve the sparse reward problem in task scenario, a sparse reward reinforcement learning method based on inverse value method is proposed. According to the task scenario, …


Relational-Grid-World: A Novel Relational Reasoning Environment And An Agentmodel For Relational Information Extraction, Faruk Küçüksubaşi, Eli̇f Sürer Jan 2021

Relational-Grid-World: A Novel Relational Reasoning Environment And An Agentmodel For Relational Information Extraction, Faruk Küçüksubaşi, Eli̇f Sürer

Turkish Journal of Electrical Engineering and Computer Sciences

Reinforcement learning (RL) agents are often designed specifically for a particular problem and they generallyhave uninterpretable working processes. Statistical methods-based agent algorithms can be improved in terms ofgeneralizability and interpretability using symbolic artificial intelligence (AI) tools such as logic programming. Inthis study, we present a model-free RL architecture that is supported with explicit relational representations of theenvironmental objects. For the first time, we use the PrediNet network architecture in a dynamic decision-making problemrather than image-based tasks, and multi-head dot-product attention network (MHDPA) as a baseline for performancecomparisons. We tested two networks in two environments -i.e., the baseline box-world environment and …


Multiagent Q-Learning Based Uav Trajectory Planning For Effective Situationalawareness, Erdal Akin, Kubi̇lay Demi̇r, Hali̇l Yetgi̇n Jan 2021

Multiagent Q-Learning Based Uav Trajectory Planning For Effective Situationalawareness, Erdal Akin, Kubi̇lay Demi̇r, Hali̇l Yetgi̇n

Turkish Journal of Electrical Engineering and Computer Sciences

In the event of a natural disaster, arrival time of the search and rescue (SAR) teams to the affected areas is of vital importance to save the life of the victims. In particular, when an earthquake occurs in a geographically large area, reconnaissance of the debris within a short-time is critical for conducting successful SAR missions. An effective and quick situational awareness in postdisaster scenarios can be provided via the help of unmanned aerial vehicles (UAVs). However, off-the-shelf UAVs suffer from the limited communication range as well as the limited airborne duration due to battery constraints. If telecommunication infrastructure is …


Deep Q-Network-Based Noise Suppression For Robust Speech Recognition, Tae-Jun Park, Joon-Hyuk Chang Jan 2021

Deep Q-Network-Based Noise Suppression For Robust Speech Recognition, Tae-Jun Park, Joon-Hyuk Chang

Turkish Journal of Electrical Engineering and Computer Sciences

This study develops the deep Q-network (DQN)-based noise suppression for robust speech recognition purposes under ambient noise. We thus design a reinforcement algorithm that combines DQN training with a deep neural networks (DNN) to let reinforcement learning (RL) work for complex and high dimensional environments like speech recognition. For this, we elaborate on the DQN training to choose the best action that is the quantized noise suppression gain by the observation of noisy speech signal with the rewards of DQN including both the word error rate (WER) and objective speech quality measure. Experiments demonstrate that the proposed algorithm improves speech …


Joint Optimization Control Of Energy Storage System Management And Demand Response, Xueying Gao, Tang Hao, Gangzhong Miao, Zhaowu Ping Jul 2020

Joint Optimization Control Of Energy Storage System Management And Demand Response, Xueying Gao, Tang Hao, Gangzhong Miao, Zhaowu Ping

Journal of System Simulation

Abstract: The joint optimization problem of energy management and demand response were studied in order to reduce the long-run cost of electricity users equipped with energy storage unit and smart applications, and to increase their benefits meanwhile. The goals were achieved by controlling both the energy storage unit (charging, discharging, or idle) and the load service (access or delay). Based on the random nature of solar photovoltaic, load demand electricity and electricity price, the joint optimization problem was modeled as infinite-horizon Markov decision process model, and Q-learning algorithm was proposed to find the optimal solution. Simulation results show that the …


Analysis And Optimization Of The Action Chain Mechanism In Agent2d Underlying In Robocup2d Soccer League, Chen Bing, Feifan Xu, Hanyan Xu, Zekai Cheng, Liu Cheng Jun 2020

Analysis And Optimization Of The Action Chain Mechanism In Agent2d Underlying In Robocup2d Soccer League, Chen Bing, Feifan Xu, Hanyan Xu, Zekai Cheng, Liu Cheng

Journal of System Simulation

Abstract: In the RoboCup2D soccer league, Agent2D is one of the most widely used underlying team in China. Data transmission noise and the incomplete action chain mechanism make the underlying teams using Agent2D be lack of flexibility. This paper introduces an action correcting parameter and optimizes the operation of the action chain by reinforcement learning mechanism. The performance of the Agent2D underlying team is improved in the game and the adaptability of the team is enhanced. Simulation experiment results show that this method has a certain effect.


Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra May 2020

Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra

Faculty Publications

It is important to be able to establish formal performance bounds for autonomous systems. However, formal verification techniques require a model of the environment in which the system operates; a challenge for autonomous systems, especially those expected to operate over longer timescales. This paper describes work in progress to automate the monitor and repair of ROS-based autonomous robot software written for an a-priori partially known and possibly incorrect environment model. A taint analysis method is used to automatically extract the data-flow sequence from input topic to publish topic, and instrument that code. A unique reinforcement learning approximation of MDP utility …


Robot Arm Control Method Based On Deep Reinforcement Learning, Heyu Li, Zhilong Zhao, Gu Lei, Liqin Guo, Zeng Bi, Tingyu Lin Dec 2019

Robot Arm Control Method Based On Deep Reinforcement Learning, Heyu Li, Zhilong Zhao, Gu Lei, Liqin Guo, Zeng Bi, Tingyu Lin

Journal of System Simulation

Abstract: Deep reinforcement learning continues to explore in the environment and adjusts the neural network parameters by the reward function. The actual production line can not be used as the trial and error environment for the algorithm, so there is not enough data. For that, this paper constructs a virtual robot arm simulation environment, including the robot arm and the object. The Deep Deterministic Policy Gradient (DDPG),in which the state variables and reward function are set,is trained by deep reinforcement learning algorithm in the simulation environment to realize the target of controlling the robot arm to move the gripper below …


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing …


Dp-Q(Λ): Real-Time Path Planning For Multi-Agent In Large-Scale Web3d Scene, Fengting Yan, Jinyuan Jia Apr 2019

Dp-Q(Λ): Real-Time Path Planning For Multi-Agent In Large-Scale Web3d Scene, Fengting Yan, Jinyuan Jia

Journal of System Simulation

Abstract: The path planning of multi-agent in an unknown large-scale scene needs an efficient and stable algorithm, and needs to solve multi-agent collision avoidance problem, and then completes a real-time path planning in Web3D. To solve above problems, the DP-Q(λ) algorithm is proposed; and the direction constraints, high reward or punishment weight training methods are used to adjust the values of reward or punishment by using a probability p (0-1 random number). The value from reward or punishment determines its next step path planning strategy. If the next position is free, the agent could walk to it. The above strategy …


Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister Jan 2019

Less Is More: Beating The Market With Recurrent Reinforcement Learning, Louis Kurt Bernhard Steinmeister

Masters Theses

"Multiple recurrent reinforcement learners were implemented to make trading decisions based on real and freely available macro-economic data. The learning algorithm and different reinforcement functions (the Differential Sharpe Ratio, Differential Downside Deviation Ratio and Returns) were revised and the performances were compared while transaction costs were taken into account. (This is important for practical implementations even though many publications ignore this consideration.) It was assumed that the traders make long-short decisions in the S&P500 with complementary 3-month treasury bill investments. Leveraged positions in the S&P500 were disallowed. Notably, the Differential Sharpe Ratio and the Differential Downside Deviation Ratio are risk …


Reinforcement Learning-Based Mobile Robot Navigation, Ni̇hal Altuntaş, Erkan İmal, Nahi̇t Emanet, Ceyda Nur Öztürk Jan 2016

Reinforcement Learning-Based Mobile Robot Navigation, Ni̇hal Altuntaş, Erkan İmal, Nahi̇t Emanet, Ceyda Nur Öztürk

Turkish Journal of Electrical Engineering and Computer Sciences

In recent decades, reinforcement learning (RL) has been widely used in different research fields ranging from psychology to computer science. The unfeasibility of sampling all possibilities for continuous-state problems and the absence of an explicit teacher make RL algorithms preferable for supervised learning in the machine learning area, as the optimal control problem has become a popular subject of research. In this study, a system is proposed to solve mobile robot navigation by opting for the most popular two RL algorithms, Sarsa($\lambda )$ and Q($\lambda )$. The proposed system, developed in MATLAB, uses state and action sets, defined in a …


Adaptive Duty Cycling In Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain And Fluid Models, Ronald Wai Hong Chan, Pengfei Zhang, Ido Nevat, Sai Ganesh Nagarajan, Alvin Cerdena Valera, Hwee Xian Tan Dec 2015

Adaptive Duty Cycling In Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain And Fluid Models, Ronald Wai Hong Chan, Pengfei Zhang, Ido Nevat, Sai Ganesh Nagarajan, Alvin Cerdena Valera, Hwee Xian Tan

Research Collection School Of Computing and Information Systems

The dynamic and unpredictable nature of energy harvesting sources available for wireless sensor networks, and the time variation in network statistics like packet transmission rates and link qualities, necessitate the use of adaptive duty cycling techniques. Such adaptive control allows sensor nodes to achieve long-run energy neutrality, where energy supply and demand are balanced in a dynamic environment such that the nodes function continuously. In this paper, we develop a new framework enabling an adaptive duty cycling scheme for sensor networks that takes into account the node battery level, ambient energy that can be harvested, and application-level QoS requirements. We …