Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering

PDF

Mathematics & Statistics Faculty Publications

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Astronaut Eva Exposure Estimates From Cad Model Spacesuit Geometry, Giovanni De Angelis, Brooke M. Anderson, William Atwell, John E. Nealy, Gary D. Qualls, John W. Wilson Mar 2004

Astronaut Eva Exposure Estimates From Cad Model Spacesuit Geometry, Giovanni De Angelis, Brooke M. Anderson, William Atwell, John E. Nealy, Gary D. Qualls, John W. Wilson

Mathematics & Statistics Faculty Publications

Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack …


Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis Jan 2002

Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis

Mathematics & Statistics Faculty Publications

Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from …