Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Deep Learning Approaches For Chaotic Dynamics And High-Resolution Weather Simulations In The Us Midwest, Vlada Volyanskaya, Kabir Batra, Shubham Shrivastava Dec 2023

Deep Learning Approaches For Chaotic Dynamics And High-Resolution Weather Simulations In The Us Midwest, Vlada Volyanskaya, Kabir Batra, Shubham Shrivastava

Discovery Undergraduate Interdisciplinary Research Internship

Weather prediction is indispensable across various sectors, from agriculture to disaster forecasting, deeply influencing daily life and work. Recent advancement of AI foundation models for weather and climate predictions makes it possible to perform a large number of predictions in reasonable time to support timesensitive policy- and decision-making. However, the uncertainty quantification, validation, and attribution of these models have not been well explored, and the lack of knowledge can eventually hinder the improvement of their prediction accuracy and precision. Our project is embarking on a two-fold approach leveraging deep learning techniques (LSTM and Transformer) architectures. Firstly, we model the Lorenz …


Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian Oct 2023

Reducing Uncertainty In Sea-Level Rise Prediction: A Spatial-Variability-Aware Approach, Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian

I-GUIDE Forum

Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change's impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or …