Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian Jan 2024

De Novo Drug Design Using Transformer-Based Machine Translation And Reinforcement Learning Of An Adaptive Monte Carlo Tree Search, Dony Ang, Cyril Rakovski, Hagop S. Atamian

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder–Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards …


Application Of Crystal Engineering In Multicomponent Pharmaceutical Crystals: A Study Of Theory And Practice, Soroush Ahmadi Nasrabadi Aug 2023

Application Of Crystal Engineering In Multicomponent Pharmaceutical Crystals: A Study Of Theory And Practice, Soroush Ahmadi Nasrabadi

Electronic Thesis and Dissertation Repository

Multicomponent crystallization, a prominent strategy in crystal engineering, offers the ability to modify the physicochemical properties of crystals by introducing a secondary component to their lattice structure. Such multicomponent crystals have found widespread application in the pharmaceutical industry. This thesis explores the experimental screening, characterization, application, and theoretical prediction of multicomponent crystals of Active Pharmaceutical Ingredients (APIs).

The first case study investigates a new solvate of Dasatinib which exhibits high instability at room temperature and transforms into a different polymorph upon desolvation. The crystal structure of this compound is obtained, revealing insights into its transient nature and the potential application …


Virtual Screening, Drug-Likeness Analysis, And Molecular Docking Study Of Potentialsevere Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors, Nikola Nedeljkovic, Milos Nikolic, Ana Stankovic, Nevena Jeremic, Dusan Tomovic, Andriana Bukonjic, Gordana Radic, Marina Mijajlovic Jan 2022

Virtual Screening, Drug-Likeness Analysis, And Molecular Docking Study Of Potentialsevere Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors, Nikola Nedeljkovic, Milos Nikolic, Ana Stankovic, Nevena Jeremic, Dusan Tomovic, Andriana Bukonjic, Gordana Radic, Marina Mijajlovic

Turkish Journal of Chemistry

Due to the length of time required to develop specific antiviral agents, the World Health Organization adopted the strategy of repurposing existing medications to treat Coronavirus disease 2019 infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease is possible biological target for potential antiviral drugs. We selected various compounds from PubChem database based on the structure of main protease inhibitors in Protein Data Bank database. Ten compounds showed nontumorigenic and nonmutagenic potential and met Egan's and Lipinski's rules. Molecular docking analysis was performed using AutoDock Vina software. Based on number and type of key binding interactions, as well as …


Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah Nov 2021

Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2′-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = …


Combined Ligand And Structure-Based Virtual Screening Approaches For Identification Of Novel Ache Inhibitors, Kader Şahi̇n, Serdar Durdaği Jan 2020

Combined Ligand And Structure-Based Virtual Screening Approaches For Identification Of Novel Ache Inhibitors, Kader Şahi̇n, Serdar Durdaği

Turkish Journal of Chemistry

The excessive activity of acetylcholinesterase enzyme (AChE) causes different neuronal problems, especially dementia and neuronal cell deaths. Food and Drug Administration (FDA) approved drugs donepezil, rivastigmine, tacrine and galantamine are AChE inhibitors and in the treatment of Alzheimer's disease (AD) these drugs are currently prescribed. However, these inhibitors have various adverse side effects. Therefore, there is a great need for the novel selective AChE inhibitors with fewer adverse side effects for the effective treatment. In this study, combined ligand-based and structure-based virtual screening approaches were used to identify new hit compounds from small molecules library of National Cancer Institute (NCI) …


Computational Modeling Of Rna-Small Molecule And Rna-Protein Interactions, Lu Chen Aug 2015

Computational Modeling Of Rna-Small Molecule And Rna-Protein Interactions, Lu Chen

Dissertations & Theses (Open Access)

The past decade has witnessed an era of RNA biology; despite the considerable discoveries nowadays, challenges still remain when one aims to screen RNA-interacting small molecule or RNA-interacting protein. These challenges imply an immediate need for cost-efficient while predictive computational tools capable of generating insightful hypotheses to discover novel RNA-interacting small molecule or RNA-interacting protein. Thus, we implemented novel computational models in this dissertation to predict RNA-ligand interactions (Chapter 1) and RNA-protein interactions (Chapter 2).

Targeting RNA has not garnered comparable interest as protein, and is restricted by lack of computational tools for structure-based drug design. To test the potential …


Combination Of The Computational Methods: Molecular Dynamics, Homology Modeling And Docking To Design Novel Inhibitors And Study Structural Changes In Target Proteins For Current Diseases, Katherine Cristina Parra Apr 2014

Combination Of The Computational Methods: Molecular Dynamics, Homology Modeling And Docking To Design Novel Inhibitors And Study Structural Changes In Target Proteins For Current Diseases, Katherine Cristina Parra

USF Tampa Graduate Theses and Dissertations

In this thesis, molecular dynamics simulations, molecular docking, and homology modeling methods have been used in combination to design possible inhibitors as well as to study the structural changes and function of target proteins related to diseases that today are in the spotlight of drug discovery. The inwardly rectifying potassium (Kir) channels constitute the first target in this study; they are involved in cardiac problems. On the other hand, tensin, a promising target in cancer research, is the second target studied here.

The first chapter includes a brief update on computational methods and the current proposal of the combination of …


Utilizing Nmr Spectroscopy And Molecular Docking As Tools For The Structural Determination And Functional Annotation Of Proteins, Jaime Stark Feb 2013

Utilizing Nmr Spectroscopy And Molecular Docking As Tools For The Structural Determination And Functional Annotation Of Proteins, Jaime Stark

Department of Chemistry: Dissertations, Theses, and Student Research

With the completion of the Human Genome Project in 2001 and the subsequent explosion of organisms with sequenced genomes, we are now aware of nearly 28 million proteins. Determining the role of each of these proteins is essential to our understanding of biology and the development of medical advances. Unfortunately, the experimental approaches to determine protein function are too slow to investigate every protein. Bioinformatics approaches, such as sequence and structure homology, have helped to annotate the functions of many similar proteins. However, despite these computational approaches, approximately 40% of proteins still have no known function. Alleviating this deficit will …


Molecular Docking And Nmr Binding Studies To Identify Novel Inhibitors Of Human Phosphomevalonate Kinase, Pornthip Boonsri, Terrence S. Neumann, Andrew Lawrence Olson, Sheng Cai, Timothy J. Herdendorf, Henry M. Miziorko, Supa Hannongbua, Daniel S. Sem Jan 2013

Molecular Docking And Nmr Binding Studies To Identify Novel Inhibitors Of Human Phosphomevalonate Kinase, Pornthip Boonsri, Terrence S. Neumann, Andrew Lawrence Olson, Sheng Cai, Timothy J. Herdendorf, Henry M. Miziorko, Supa Hannongbua, Daniel S. Sem

Chemistry Faculty Research and Publications

Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based 1H–15N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 μM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural …


I. Synthesis Of Anthraquinone Derivatives For Electron Transfer Studies In Dna. Ii. Characterization Of The Interaction Between Heme And Proteins., Yu Cao Aug 2011

I. Synthesis Of Anthraquinone Derivatives For Electron Transfer Studies In Dna. Ii. Characterization Of The Interaction Between Heme And Proteins., Yu Cao

Chemistry Dissertations

Anthraquinone (AQ) derivatives with relatively high reduction potentials have been synthesized to afford good candidates for electron transfer studies in DNA. Electron withdrawing groups on the anthraquinone ring gave derivatives with less negative reduction potentials. The anthraquinone imide (AQI) derivatives had reduction potentials less negative than AQ derivatives. The AQI ring system was subject to base-induced hydrolysis.

Water-soluble sulfonated tetraarylporphyrins have been studied in a wide variety of contexts. Herein, we report the first synthesis of a pentasulfonated porphyrin bearing an internal cyclic sulfone ring. Treatment of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) with fuming H2SO4 gave a structure consistent with …


Development Of Inhibitors And Assay Methods For Histone Acetyltransferases, Jiang Wu May 2011

Development Of Inhibitors And Assay Methods For Histone Acetyltransferases, Jiang Wu

Chemistry Dissertations

Histone acetyltransferases (HATs) are important enzymes in transcriptional control and potential targets for chemotherapeutic intervention in malignant diseases. Among different HAT members, the yeast Esa1 and human Tip60 (the HIV-1 Tat interactive protein, 60KDa) play multiple roles in normal cellular processes including transcription, cell cycle and checkpoint machinery, double strand DNA break repair, apoptosis, and cell cycle progression. Tip60 is also implicated in several human diseases such as prostate cancer, and gastric cancer. These studies suggest that Tip60 is a potential therapeutic target for new cancer treatment. So, we designed experimental work to synthesize and investigate organic inhibitors of Tip60 …