Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Oxidation

University of Kentucky

2020

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Oxidation Of Phenolic Aldehydes By Ozone And Hydroxyl Radicals At The Air-Water Interface, Md Sohel Rana, Marcelo I. Guzman Oct 2020

Oxidation Of Phenolic Aldehydes By Ozone And Hydroxyl Radicals At The Air-Water Interface, Md Sohel Rana, Marcelo I. Guzman

Chemistry Faculty Publications

Biomass burning releases highly reactive methoxyphenols into the atmosphere, which can undergo heterogeneous oxidation and act as precursors for secondary organic aerosol (SOA) formation. Understanding the reactivity of such methoxyphenols at the air–water interface is a matter of major atmospheric interest. Online electrospray ionization mass spectrometry (OESI-MS) is used here to study the oxidation of two methoxyphenols among three phenolic aldehydes, 4-hydroxybenzaldehyde, vanillin, and syringaldehyde, on the surface of water. The OESI-MS results together with cyclic voltammetry measurements at variable pH are integrated into a mechanism describing the heterogeneous oxidative processing of methoxyphenols by gaseous ozone (O3) and …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …