Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Oxidation

Ateneo de Manila University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Electronic Effects In Oxidation Reactions Utilizing Dinuclear Copper Complexes With The Bis[3-(2-Hydroxybenzylideneamino)Phenyl] Sulfone Ligand, Armando M. Guidote Jr, Ronald L. Reyes, Riyo Kashihara, Yasuhiko Kurusu, Yoshihiro Masuyama Jan 2014

Electronic Effects In Oxidation Reactions Utilizing Dinuclear Copper Complexes With The Bis[3-(2-Hydroxybenzylideneamino)Phenyl] Sulfone Ligand, Armando M. Guidote Jr, Ronald L. Reyes, Riyo Kashihara, Yasuhiko Kurusu, Yoshihiro Masuyama

Chemistry Faculty Publications

Copper acetate and the ligands bis[3-(3-tert-butyl-2-hydroxy-5-methoxybenzylideneamino)phenyl] sulfone and bis[3-(3,5-di-tert-butyl-2-hydroxybenzylideneamino)phenyl] sulfone were reacted to form the complexes with 2:1 copper:ligand ratio, Cu2[B(t-Bu) (OMe)BAPS](µ-OCH3)2 (4) and with 2:2 copper:ligand ratio, Cu2[B(t-Bu)2BAPS]2 (5), respectively. Structures of 4 and 5 were determined based on IR, UV-Vis, and FAB-MS data in comparison with previously characterized related copper complexes. The two complexes 4 and 5 were utilized in the oxidation of the substrates 2,4- and 2,6-di-tertbutylphenol (dtbp) at -50C with H2O2 in CH2Cl2. The coupling products are preferred in both cases. For 2,4-dtbp, yields of 4,600% and 7,200% of 3,3’,5,5’-tetra-tert-butyl-2,2’- biphenol were achieved with the use …


Physico-Chemical And Microbiological Parameters In The Deterioration Of Virgin Coconut Oil, Ian Ken D. Dimzon, Melodina F. Valde, Jaclyn Elizabeth R. Santos, Mark Joseph Garrovillas, Henson M. Dejarme, Jo Margarette W. Remollo, Fabian M. Dayrit Jun 2011

Physico-Chemical And Microbiological Parameters In The Deterioration Of Virgin Coconut Oil, Ian Ken D. Dimzon, Melodina F. Valde, Jaclyn Elizabeth R. Santos, Mark Joseph Garrovillas, Henson M. Dejarme, Jo Margarette W. Remollo, Fabian M. Dayrit

Chemistry Faculty Publications

The deterioration of virgin coconut oil (VCO) due to physico-chemical oxidation and hydrolysis and microbiological processes was studied. The physico-chemical oxidation of VCO in the air at room temperature was negligible. Oxidation of VCO was observed only in the presence of air, UV radiation, ferric ion (Fe3+), and high free fatty acid (FFA) content. Chemical hydrolysis was performed at varying moisture levels and temperatures. The rate of hydrolysis to produce FFAs was measured using 31P NMR under conditions of saturated water (0.22%) and 80°C was found to be 0.066 µmol/g-hr (expressed as lauric acid). At 0.084% moisture and 80°C, the …