Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …


Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker Nov 2020

Coevolution, Dynamics And Allostery Conspire In Shaping Cooperative Binding And Signal Transmission Of The Sars-Cov-2 Spike Protein With Human Angiotensin-Converting Enzyme 2, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Binding to the host receptor is a critical initial step for the coronavirus SARS-CoV-2 spike protein to enter into target cells and trigger virus transmission. A detailed dynamic and energetic view of the binding mechanisms underlying virus entry is not fully understood and the consensus around the molecular origins behind binding preferences of SARS-CoV-2 for binding with the angiotensin-converting enzyme 2 (ACE2) host receptor is yet to be established. In this work, we performed a comprehensive computational investigation in which sequence analysis and modeling of coevolutionary networks are combined with atomistic molecular simulations and comparative binding free energy analysis of …


Ligand Selectivity In The Recognition Of Protoberberine Alkaloids By Hybrid-2 Human Telomeric G-Quadruplex: Binding Free Energy Calculation, Fluorescence Binding, And Nmr Experiments, Nanjie Deng, Junchao Xia, Lauren Wickstrom, Clement Lin, Kaibo Wang, Peng He, Yunting Yin, Danzhou Yang Apr 2019

Ligand Selectivity In The Recognition Of Protoberberine Alkaloids By Hybrid-2 Human Telomeric G-Quadruplex: Binding Free Energy Calculation, Fluorescence Binding, And Nmr Experiments, Nanjie Deng, Junchao Xia, Lauren Wickstrom, Clement Lin, Kaibo Wang, Peng He, Yunting Yin, Danzhou Yang

Publications and Research

The human telomeric G-quadruplex (G4) is an attractive target for developing anticancer drugs. Natural products protoberberine alkaloids are known to bind human telomeric G4 and inhibit telomerase. Among several structurally similar protoberberine alkaloids, epiberberine (EPI) shows the greatest specificity in recognizing the human telomeric G4 over duplex DNA and other G4s. Recently, NMR study revealed that EPI recognizes specifically the hybrid-2 form human telomeric G4 by inducing large rearrangements in the 50-flanking segment and loop regions to form a highly extensive four-layered binding pocket. Using the NMR structure of the EPI-human telomeric G4 complex, here we perform molecular dynamics free …


Shape-Dependent Molecular Recognition Of Specific Sequences Of Dna By Heterocyclic Cations, Yi Miao Aug 2006

Shape-Dependent Molecular Recognition Of Specific Sequences Of Dna By Heterocyclic Cations, Yi Miao

Chemistry Dissertations

SHAPE-DEPENDENT MOLECULAR RECOGNITION OF SPECIFIC SEQUENCES OF DNA BY HETEROCYCLIC CATIONS by YI MIAO Under the Direction of Dr. W. David Wilson ABSTRACT DB921 and DB911 are biphenyl-benzimidazole-diamidine isomers with a central para- and meta-substituted phenyl group, respectively. Unexpectedly, linear DB921 has much stronger binding affinity with DNA than its curved isomer, DB911. This is quite surprising and intriguing since DB911 has the classical curved shape generally required for strong minor groove binding while DB921 clearly does not match the groove shape. Several biophysical techniques including thermal melting (Tm), circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and isothermal titration calorimetry …