Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Exploration Of Nucleic Acid Hydrogran Bonding Using Molecular Mechanics And Dft Calculations, Simi Kaur Dec 2019

Exploration Of Nucleic Acid Hydrogran Bonding Using Molecular Mechanics And Dft Calculations, Simi Kaur

Biological Sciences

Many recent theoretical and experimental techniques have been developed to probe the structurefunction relationships of complex biomolecules. The roles of RNAs are dependent upon various intricate structural motifs and interactions, including hairpins, pseudoknots, long range territory contacts, bulges and internal loops, that are not easily captured by these methods. We had previously developed an enhanced replica exchange molecular dynamics method that incorporated secondary structure information in the form of distance restraints in order to effectively overcome kinetic barriers and sample conformational space. In several structures, restrained RNA base pairs near large bulges displayed a preference for stacking over hydrogen bonding …


Spontaneous Recombination Of Short Rnas To Increase Length And Complexity In Prebiotically Plausible Conditions, Benedict Arthur Smail Nov 2019

Spontaneous Recombination Of Short Rnas To Increase Length And Complexity In Prebiotically Plausible Conditions, Benedict Arthur Smail

Dissertations and Theses

The RNA World hypothesis is an influential theory of how life arose on earth which posits that the earliest life forms carried out essential activities with RNA catalysts instead of proteins. Substantial evidence to support this theory comes from among others, the fact that the ribosome is a ribozyme, the existence of small RNA catalysts capable of high activity, and self-assembling ribozymes such as the Azoarcus ribozyme. Additional support has been provided by the directed evolution of various ribozymes and the reputed prebiotic synthesis of nucleotides and small RNA oligomers. However, it has long been challenging to show how long …


Nitrogen Heterocycles Form Peptide Nucleic Acid Precursors In Complex Prebiotic Mixtures, Laura E. Rodriguez, Christopher H. House, Karen E. Smith, Melissa R. Roberts, Michael P. Callahan Jun 2019

Nitrogen Heterocycles Form Peptide Nucleic Acid Precursors In Complex Prebiotic Mixtures, Laura E. Rodriguez, Christopher H. House, Karen E. Smith, Melissa R. Roberts, Michael P. Callahan

Chemistry and Biochemistry Faculty Publications and Presentations

The ability to store information is believed to have been crucial for the origin and evolution of life; however, little is known about the genetic polymers relevant to abiogenesis. Nitrogen heterocycles (N-heterocycles) are plausible components of such polymers as they may have been readily available on early Earth and are the means by which the extant genetic macromolecules RNA and DNA store information. Here, we report the reactivity of numerous N-heterocycles in highly complex mixtures, which were generated using a Miller-Urey spark discharge apparatus with either a reducing or neutral atmosphere, to investigate how N-heterocycles are modified under plausible prebiotic …


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese May 2019

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered …


Spontaneous Advent Of Genetic Diversity In Rna Populations Through Multiple Recombination Mechanisms, Benedict A. Smail, Bryce E. Clifton, Ryo Mizuuchi, Niles Lehman May 2019

Spontaneous Advent Of Genetic Diversity In Rna Populations Through Multiple Recombination Mechanisms, Benedict A. Smail, Bryce E. Clifton, Ryo Mizuuchi, Niles Lehman

Chemistry Faculty Publications and Presentations

There are several plausible abiotic synthetic routes from prebiotic chemical materials to ribonucleotides and even short RNA oligomers. However, for refinement of the RNA World hypothesis to help explain the origins of life on the Earth, there needs to be a manner by which such oligomers can increase their length and expand their sequence diversity. Oligomers longer than at least 10-20 nucleotides would be needed for raw material for subsequent natural selection. Here, we explore spontaneous RNA-RNA recombination as a facile means by which such length and diversity enhancement could have been realized. Motivated by the discovery that RNA oligomers …


Infrared Laser Ablation For Biomolecule Sampling, Kelin Wang Mar 2019

Infrared Laser Ablation For Biomolecule Sampling, Kelin Wang

LSU Doctoral Dissertations

In this research, an infrared laser at a wavelength of 3 µm was used to ablate material from tissue sections for biomolecule analysis. Pulsed infrared (IR) irradiation of tissue with a focused laser beam efficiently removed biomolecules, such as proteins, enzymes, DNA, and RNA from tissue sections for further analysis. In a proteomics project, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to determine regions of interest (ROI) for laser ablation. The matrix was then washed off. By overlaying the MSI generated heat-map, the section was sampled using IR laser ablation and custom stage-control software. Two ROI were selected …


Conformational Flexibility In The Enterovirus Rna Replication Platform, Meghan S. Warden, Kai Cai, Gabriel Cornilescu, Jordan E. Burke, Komala Ponniah, Samuel E. Butcher, Steven M. Pascal Jan 2019

Conformational Flexibility In The Enterovirus Rna Replication Platform, Meghan S. Warden, Kai Cai, Gabriel Cornilescu, Jordan E. Burke, Komala Ponniah, Samuel E. Butcher, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

A presumed RNA cloverleaf (5′CL), located at the 5′-most end of the noncoding region of the enterovirus genome, is the primary established site for initiation of genomic replication. Stem–loop B (SLB) and stem–loop D (SLD), the two largest stem–loops within the 5′CL, serve as recognition sites for protein interactions that are essential for replication. Here we present the solution structure of rhinovirus serotype 14 5′CL using a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering. In the absence of magnesium, the structure adopts an open, somewhat extended conformation. In the presence of magnesium, the structure compacts, bringing SLB …


Computational Modeling As A Tool For Designing Ligands And Receptors, Waqas S. Awan Jan 2019

Computational Modeling As A Tool For Designing Ligands And Receptors, Waqas S. Awan

Legacy Theses & Dissertations (2009 - 2024)

Computational methods can be used for a wide range of applications, especially regarding DNA and RNA. Interactions such as sugar torsions, receptor-ligand interactions, ligand docking/drug docking, receptor modeling, and drug design are excellent candidates for computational analysis and in silico experiments. The use of molecular dynamics software (GROMACS) coupled with molecular design software (MOE) produce insights that may have been otherwise difficult to assess. All these problems are academic in nature but have practical uses outside of academia. Understanding alternate linkages can lead to antibiotic assays to address potential superbug epidemics. Modeling DNA superstructures can provide insight into how large …