Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka Dec 2019

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka

MSU Graduate Theses

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models shows that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Afterward, Hybrid Reverse Monte Carlo (HRMC) technique is used to recreate a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12 …


Fast-Forward Protein Folding And Design: Development, Analysis, And Applications Of The Fast Sampling Algorithm, Maxwell Isaac Zimmerman Aug 2019

Fast-Forward Protein Folding And Design: Development, Analysis, And Applications Of The Fast Sampling Algorithm, Maxwell Isaac Zimmerman

Arts & Sciences Electronic Theses and Dissertations

Molecular dynamics simulations are a powerful tool to explore conformational landscapes, though limitations in computational hardware commonly thwart observation of biologically relevant events. Since highly specialized or massively parallelized distributed supercomputers are not available to most scientists, there is a strong need for methods that can access long timescale phenomena using commodity hardware. In this thesis, I present the goal-oriented sampling method, Fluctuation Amplification of Specific Traits (FAST), that takes advantage of Markov state models (MSMs) to adaptively explore conformational space using equilibrium-based simulations. This method follows gradients in conformational space to quickly explore relevant conformational transitions with orders of …


A Physics-Based Intermolecular Potential For Biomolecular Simulation, Joshua Andrew Rackers Aug 2019

A Physics-Based Intermolecular Potential For Biomolecular Simulation, Joshua Andrew Rackers

Arts & Sciences Electronic Theses and Dissertations

The grand challenge of biophysics is to use the fundamental laws of physics to predict how biological molecules will move and interact. The atomistic HIPPO (Hydrogen-like Intermolecular Polarizable Potential) force field is meant to address this challenge. It does so by breaking down the intermolecular potential energy function of biomolecular interactions into physically meaningful components (electrostatics, polarization, dispersion, and exchangerepulsion) and using this function to drive molecular dynamics simulations. This force field is able to achieve accuracy within 1 kcal/mol for each component when compared with ab initio Symmetry Adapted Perturbation Theory calculations. HIPPO is capable of this accuracy because …


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Simulation And Software Development To Understand Interactions Of Guest Molecules Inporous Materials, Douglas M. Franz Jul 2019

Simulation And Software Development To Understand Interactions Of Guest Molecules Inporous Materials, Douglas M. Franz

USF Tampa Graduate Theses and Dissertations

The effect of inclusion of explicit polarization is investigated through several theoret- ical studies of crystalline porous materials herein. In addition to the use of Monte Carlo simulation for such studies, a robust molecular dynamics software is presented which is suitable for analyzing time dependent properties of gases or other molecules in porous materials and other condensed phase systems. Metal-organic frameworks (MOFs) are the main focus of the work included here, a relatively young class of materials originally in- troduced in the early 1990s. These are usually three dimensional crystalline nanoporous materials that exhibit unique properties such as gas separation, …


Multiscale Simulations Of Intrinsically Disordered Proteins, Xiaorong Liu Jul 2019

Multiscale Simulations Of Intrinsically Disordered Proteins, Xiaorong Liu

Doctoral Dissertations

Intrinsically disordered proteins (IDPs) lack stable secondary and/or tertiary structures under physiological conditions. The have now been recognized to play important roles in numerous biological processes, particularly cellular signaling and regulation. Mutation of IDPs are frequently associated with human diseases, such as cancers and neuron degenerative diseases. Therefore, it is important to understand the structure, dynamics, and interactions of IDPs, so as to establish the mechanistic basis of how intrinsic disorder mediates versatile functions and how such mechanisms may fail in human diseases. However, the heterogeneous structural ensembles of IDPs are not amenable to high resolution characterization solely through experimental …


Conformational Dynamics Of Single Pre-Mrna Molecules During In Vitro Splicing, J. Abelson, M. Blanco, M. A. Ditzler, F. Fuller, P. Aravamudhan, M. Wood, T. Villa, D. E. Ryan, J. A. Pleiss, Corina Maeder, C. Guthrie May 2019

Conformational Dynamics Of Single Pre-Mrna Molecules During In Vitro Splicing, J. Abelson, M. Blanco, M. A. Ditzler, F. Fuller, P. Aravamudhan, M. Wood, T. Villa, D. E. Ryan, J. A. Pleiss, Corina Maeder, C. Guthrie

Corina Maeder

The spliceosome is a complex small nuclear RNA (snRNA)-protein machine that removes introns from pre-mRNAs via two successive phosphoryl transfer reactions. The chemical steps are isoenergetic, yet splicing requires at least eight RNA-dependent ATPases responsible for substantial conformational rearrangements. To comprehensively monitor pre-mRNA conformational dynamics, we developed a strategy for single-molecule FRET (smFRET) that uses a small, efficiently spliced yeast pre-mRNA, Ubc4, in which donor and acceptor fluorophores are placed in the exons adjacent to the 5′ and 3′ splice sites. During splicing in vitro, we observed a multitude of generally reversible time-and ATP-dependent conformational transitions of individual pre-mRNAs. The …


Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy Jan 2019

Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy

Graduate Research Theses & Dissertations

Molecular dynamics (MD) simulations can be used to compute static structure factors (��(��)) and provide an interpretation of the underlying periodic atomic ordering. MD simulations complement experimentally measured ��(��) by allowing qualitative assignment of peaks to various ordering, such as cation-anion ordering in ionic liquids, via decomposition of ��(��) into partial ��(��). Here we present a method for classifying interatomic distances that allows for quantitative peak assignment and visualization of atoms that contribute most to each peak in calculated ��(��) for soft materials. The method is illustrated by investigating ��(��) for the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C4C1pyrrTFSI), which shows two …


Molecular Dynamics Simulations In First-Semester General Chemistry: Visualizing Gas Particle Motion And Making Connections To Mathematical Gas Law Relationships, Chrystal D. Bruce Jan 2019

Molecular Dynamics Simulations In First-Semester General Chemistry: Visualizing Gas Particle Motion And Making Connections To Mathematical Gas Law Relationships, Chrystal D. Bruce

2019 Faculty Bibliography

Implementation of a freely available molecular dynamics (MD) software program in a general chemistry class to assist students in learning the relationship among particle motion, macroscopic properties, and mathematical gas laws is described. In this activity, students acquire skills in data analysis while developing a deeper understanding of the origin of macroscopic physical properties of gases. The activity is easy to implement and does not require significant expertise in computational chemistry on the part of the instructor.


Why Protein Conformers In Molecular Dynamics Simulations Differ From Their Crystal Structures: A Thermodynamic Insight, Fi̇li̇ppo Pullara, Mao Wenzhi, Mert Gür Jan 2019

Why Protein Conformers In Molecular Dynamics Simulations Differ From Their Crystal Structures: A Thermodynamic Insight, Fi̇li̇ppo Pullara, Mao Wenzhi, Mert Gür

Turkish Journal of Chemistry

Conformers generally deviate structurally from their starting X-ray crystal structures early in molecular dynamics (MD) simulations. Studies have recognized such structural differences and attempted to provide an explanation for and justify the necessity of MD equilibrations. However, a detailed explanation based on fundamental physics and validation on a large ensemble of protein structures is still missing. Here we provide the first thermodynamic insights into the radically different thermodynamic conditions of crystallization solutions and conventional MD simulations. Crystallization solution conditions can lead to nonphysiologically high ion concentrations, low temperatures, and crystal packing with strong specific protein--protein interactions, not present under physiological …


Pore Length- And Ion Concentration-Dependent Ionic Current In Cylindrical Nanopores: An Atomistic Molecular Dynamics Study, Nazar İleri̇ Ercan Jan 2019

Pore Length- And Ion Concentration-Dependent Ionic Current In Cylindrical Nanopores: An Atomistic Molecular Dynamics Study, Nazar İleri̇ Ercan

Turkish Journal of Chemistry

The sensing of individual molecules as they pass through nanopores under an external field is a popular research field. The approach is simply based on the detectable temporary blockades in the ionic current as the molecules pass through the nanopores. These signatures of the current have been shown to be a function of nanoparticle and nanopore size and geometry as well as the external electric field. However, models developed in this context fail to predict the experimentally observed behavior in technologically important shorter nanopores. Here we present atomistic molecular dynamics simulation results from colloidal nanoparticle translocation through mid-to-low aspect ratio …