Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2019

Chemistry Publications

Myoglobin

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Testing The Robustness Of Solution Force Fields For Md Simulations On Gaseous Protein Ions., Justin H Lee, Katja Pollert, Lars Konermann Aug 2019

Testing The Robustness Of Solution Force Fields For Md Simulations On Gaseous Protein Ions., Justin H Lee, Katja Pollert, Lars Konermann

Chemistry Publications

It is believed that electrosprayed proteins and protein complexes can retain solution-like conformations in the gas phase. However, the lack of high-resolution structure determination methods for gaseous protein ions implies that their properties remain poorly understood. Many practitioners tackle this difficulty by complementing mass spectrometry-based experiments with molecular dynamics (MD) simulations. It is a potential problem that the standard MD force fields used for this purpose (such as OPLS-AA/L and CHARMM) were optimized for solution conditions. The question whether these force fields produce meaningful gas-phase data has received surprisingly little attention. Standard force fields are overpolarized to account for an …


Mechanism Of Electrospray Supercharging For Unfolded Proteins: Solvent-Mediated Stabilization Of Protonated Sites During Chain Ejection., Insa Peters, Haidy Metwally, Lars Konermann May 2019

Mechanism Of Electrospray Supercharging For Unfolded Proteins: Solvent-Mediated Stabilization Of Protonated Sites During Chain Ejection., Insa Peters, Haidy Metwally, Lars Konermann

Chemistry Publications

Proteins that are unfolded in solution produce higher charge states during electrospray ionization (ESI) than their natively folded counterparts. Protein charge states can be further increased by the addition of supercharging agents (SCAs) such as sulfolane. The mechanism whereby these supercharged [M + zH] z+ ions are formed under unfolded conditions remains unclear. Here we employed a combination of mass spectrometry (MS), ion mobility spectrometry (IMS), and molecular dynamics (MD) simulations for probing the ESI mechanism under denatured supercharging conditions. ESI of acid-unfolded apo-myoglobin (aMb) in the presence of sulfolane produced charge states around 27+, all the way to fully …