Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Electrocatalysis In Polymer Electrolyte Membrane Fuel Cells, Li Li, Si-Guo Chen, Xue-Qiang Qi, Yao-Qiong Wang, Meng-Bo Ji, Lan-Lan Li, Zi-Dong Wei Nov 2009

Electrocatalysis In Polymer Electrolyte Membrane Fuel Cells, Li Li, Si-Guo Chen, Xue-Qiang Qi, Yao-Qiong Wang, Meng-Bo Ji, Lan-Lan Li, Zi-Dong Wei

Journal of Electrochemistry

This review presents the study of Chongqing University in electrocatalysis for polymer electrolyte membrane fuel cells(PEMFCs).Based on the understanding to the performance degradation of PEMFCs' catalysts,the university has being concentrated on how to increase the activity,stability and utility of noble metal catalysts.It covers the molecular design of near-surface alloy catalysts for improvement of activity to oxygen reduction reaction(ORR) and resistance to foreign poison species,selective deposition of Pt on the so-called "three-phase interface" for a high Pt utility,and invention of anti-flooding electrode against water flooding in the catalyst layer of the membrane assemble electrode(MEA),and so on.The catalytic mechanism of electrode reactions …


A Density Functional Theory Study Of Oxidation Of Benzene To Phenol By N_2o On Fe- And Co-Zsm-5 Clusters, Mehmet Ferdi̇ Fellah, Işik Önal Jan 2009

A Density Functional Theory Study Of Oxidation Of Benzene To Phenol By N_2o On Fe- And Co-Zsm-5 Clusters, Mehmet Ferdi̇ Fellah, Işik Önal

Turkish Journal of Chemistry

Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N_2O on relaxed [(SiH_3)_4AlO_4M] (where M=Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formation step is the rate-limiting step for both clusters and Co-ZSM-5 surface has a lower activation barrier than the Fe-ZSM-5 surface (i.e. 35.82 …


Quantum Chemical Investigations Of Nucleophilic Aromatic Substitution Reactions And Acid Dissociations Of Aliphatic Carboxylic Acids, David Henry Schory Jan 2009

Quantum Chemical Investigations Of Nucleophilic Aromatic Substitution Reactions And Acid Dissociations Of Aliphatic Carboxylic Acids, David Henry Schory

Browse all Theses and Dissertations

Quantum chemical analysis was used to examine nucleophilic aromatic substitution reactions of fluorinated benzophenones, diphenyl sulfones, and triphenylphosphine oxides. Some experimental results for these compounds were contrary to conventional wisdom, which holds that calculated atomic charges for the aromatic sites and 13C-NMR and 19F-NMR chemical shifts should allow prediction of the preferred sites for aromatic substitution. Density functional theory (B3LYP/6-31+G*//RM1) and semi-empirical (RM1) quantum chemical calculations were employed to study the intermediates in the reaction pathways in order to identify the preferred paths for aromatic substitution. In most cases studied para substitution pathways had the lower energy intermediates …