Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Origin Of Enantioselection In Chiral Alcohol Oxidation Catalyzed By Pd[(–)-Sparteine]Cl2, J. A. Mueller, Anne Cowell, Bert D. Chandler, M. S. Sigman Sep 2005

Origin Of Enantioselection In Chiral Alcohol Oxidation Catalyzed By Pd[(–)-Sparteine]Cl2, J. A. Mueller, Anne Cowell, Bert D. Chandler, M. S. Sigman

Chemistry Faculty Research

A kinetic investigation into the origin of enantioselectivity for the Pd[(–)-sparteine]Cl2-catalyzed aerobic oxidative kinetic resolution (OKR) is reported. A mechanism to account for a newly discovered chloride dissociation from Pd[(–)-sparteine]Cl2 prior to alcohol binding is proposed. The mechanism includes (1) chloride dissociation from Pd[(–)-sparteine]Cl2 to form cationic Pd(–)-sparteine]Cl, (2) alcohol binding, (3) deprotonation of Pd-bound alcohol to form a Pd-alkoxide, and (4) β-hydride elimination of Pd–alkoxide to form ketone product and a Pd–hydride. Utilizing the addition of (–)-sparteine HCl to control the [Cl] and [H+] and the resulting derived rate law, …


Development Of A Model For The Kinetics And Mechanism Of Nitrogenase, Phillip E. Wilson Jul 2005

Development Of A Model For The Kinetics And Mechanism Of Nitrogenase, Phillip E. Wilson

Theses and Dissertations

Nitrogenase has a central role in the global nitrogen cycle as the enzyme that catalyzes the reduction of atmospheric N2 to NH3. Fixed nitrogen is generally limiting in the environment and in agriculture, so nitrogenase has received much attention as an alternative to nitrogen fertilizers. Characterizing the mechanism of nitrogenase is the goal of this work. The molybdenum nitrogenase enzyme system is comprised of the MoFe protein and the Fe protein. Interactions between these proteins and nucleotides are crucial to catalysis. An important approach to characterize these interactions is to correlate the kinetics of nitrogenase catalysis to a mechanism based …


Crystal Structure Of The Gtpase Domain Of Rat Dynamin 1, Thomas F. Reubold, Susanne Eschenburg, Andreas Becker, Marilyn Leonard, Sandra L. Schmid, Richard B. Vallee, F. Jon Kull, Dietmar J. Manstein Jan 2005

Crystal Structure Of The Gtpase Domain Of Rat Dynamin 1, Thomas F. Reubold, Susanne Eschenburg, Andreas Becker, Marilyn Leonard, Sandra L. Schmid, Richard B. Vallee, F. Jon Kull, Dietmar J. Manstein

Dartmouth Scholarship

Here, we present the 1.9-A crystal structure of the nucleotide-free GTPase domain of dynamin 1 from Rattus norvegicus. The structure corresponds to an extended form of the canonical GTPase fold observed in Ras proteins. Both nucleotide-binding switch motifs are well resolved, adopting conformations that closely resemble a GTP-bound state not previously observed for nucleotide-free GTPases. Two highly conserved arginines, Arg-66 and Arg-67, greatly restrict the mobility of switch I and are ideally positioned to relay information about the nucleotide state to other parts of the protein. Our results support a model in which switch I residue Arg-59 gates GTP binding …