Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Folic Acid – Carbon Dots – Doxorubicin Nanoparticles As Cancer Theranostic, Michael Tetteh Dec 2022

Folic Acid – Carbon Dots – Doxorubicin Nanoparticles As Cancer Theranostic, Michael Tetteh

Electronic Theses and Dissertations

This work focused on engineering bi-functionalized nanoparticles (NPs) based on carbon dots (CDs) to improve early cancer detection and treatment. Therefore, using folic acid (FA) as a targeting agent, the CDs were prepared to deliver high concentrations (HC) of doxorubicin (DOX) and gemcitabine (GEM) covalently and non-covalently to cancer cells. The prepared FA-CDs-DOX/GEM-HC NPs were characterized using ultraviolet-visible spectroscopy, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. Assessment of the drug loading capacity (DLC) and drug loading efficiency (DLE) indicated that the non-covalent NPs have low DLC but high DLE compared to the relatively low DLE and high DLC of covalent …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Development Of In Situ Second-Order Nonlinear Optical Scatterings For Molecular Behaviors At Aerosol Surfaces, Yuqin Qian Dec 2022

Development Of In Situ Second-Order Nonlinear Optical Scatterings For Molecular Behaviors At Aerosol Surfaces, Yuqin Qian

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Aerosol particles are one of the most important components of the atmosphere. During the growth of aerosol particles, they directly or indirectly affect air quality, human health, and environmental chemistry. Therefore, understanding the chemical and physical properties of such particles is an important scientific, engineering, and medical issue. The growth of aerosol particles in the atmosphere is closely related to the chemical structure at its surface, as well as the heterogeneous reactions which take place at and below the particle’s surface. However, there is a lack of suitable surface-specific analytical techniques which directly measure the chemical structure of aerosol particle …


Development Of Plasmonic And X-Ray Luminescence Nanoparticles For Bioimaging And Sensing Applications, Meenakshi Ranasinghe Aug 2022

Development Of Plasmonic And X-Ray Luminescence Nanoparticles For Bioimaging And Sensing Applications, Meenakshi Ranasinghe

All Dissertations

This dissertation discusses the development of plasmonic and X-ray luminescence nanoparticles (~100 nm) to use in bioimaging and sensing applications. The nanoparticles have interesting optical properties compared to their atomic levels and bulk materials. The optical properties of nanomaterials can be controlled by changing size, shape, crystal structure, etc. Also, they have a large surface area that can be functionalized with biomolecules. Therefore, the optical properties and biofunctionalized nanomaterials are useful in biomedical applications such as targeted drug delivery, bioimaging, and sensing. The overall theme is to use nanoparticles with interesting optical properties compared to their atomic levels and bulk …


Novel Synthetic Strategies Toward Polyolefin-Grafted Nanoparticles, Richard Tran Ly Jul 2022

Novel Synthetic Strategies Toward Polyolefin-Grafted Nanoparticles, Richard Tran Ly

Theses and Dissertations

Surface functionalization of nanoparticles has proven to be a powerful and versatile strategy in the development of various materials with advanced properties. Polymer brush composition can range from complex copolymers to more simplistic polyolefin, and by functionalizing nanoparticle surfaces, mobility of distinct particles can then be tuned and, therefore, control over dispersion in a polymer matrix can be achieved. Presented in this dissertation are new synthetic strategies for the preparation of polymer nanocomposites.

The first chapter covers a novel synthetic strategy for ethylene/propylene-like copolymers grafted to silica nanoparticles. This approach utilizes Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization to promote living …


Sol-Gel Synthesis And Spectroscopic Characterization Of Titanium Dioxide Doped With Copper And Iron, Erin L. Jacoski Jun 2022

Sol-Gel Synthesis And Spectroscopic Characterization Of Titanium Dioxide Doped With Copper And Iron, Erin L. Jacoski

Chemistry Senior Theses

A source of bioavailable iron in open oceans stems from aerosols, increasing phytoplankton growth and the sequestration of atmospheric carbon dioxide. These aerosols contain semiconductors, like titanium dioxide, which is known to increase the bioavailability and can trigger photoreduction of Fe3+. Recently, it is suspected that other metals in the aerosols also influence the release of iron. In this work, the effects of doping with iron and copper on the physical characteristics of titanium dioxide nanoparticles, since the photocatalytic potential of titanium dioxide depends on its structure and metal content (anatase vs. rutile), were explored. Titanium dioxide nanoparticles were prepared …


Characterization Of Bimetallic Silver-Copper Nanoinks With Hydroxyethyl-Cellulose Additives, Daniel Brunick May 2022

Characterization Of Bimetallic Silver-Copper Nanoinks With Hydroxyethyl-Cellulose Additives, Daniel Brunick

Undergraduate Honors Theses

Coinage metal nanoparticles remain an intriguing subject for research due to their industrial versatility. Primary applications of coinage metal nanoparticles include printed electronics, solar panels, and sensors. Inks formulated with the nanoparticles are conductive and thus useful for fabricating sensors. Silver-copper nanoalloy inks are viable for the fabrication of flexible sensing devices for the detection of volatile organic compounds. One of the challenges is the ability to synthesize composition-controllable alloy nanoparticles at room temperature through wet chemical methods and achieve controllable sintering at room temperature. This work addresses the challenges by investigating the room-temperature synthesis of silver-copper alloy nanoparticles and …


Lc-Ms Identification Of Serum Proteins Adsorbed Onto Ionic Liquid-Coated Nanoparticles, Anh M. Hoang May 2022

Lc-Ms Identification Of Serum Proteins Adsorbed Onto Ionic Liquid-Coated Nanoparticles, Anh M. Hoang

Honors Theses

Nanocarriers are promising candidates for drug delivery due to their size and tunable surface characteristics. However, when they are intravenously injected, few particles make it to their designated location. This is because upon entering the bloodstream, the serum in the blood, which is rich with a diversity of proteins, adsorbs onto the particles’ surfaces forming a protein corona. Many of the attached proteins trigger the mobile immune system and are removed by macrophages, and many particles are then filtered out by the liver and kidneys. Ionic Liquids (ILs), which consist of asymmetric, bulky components that are liquid


Synthesis And Characterization Of Ternary Pt Nanoally Catalysts For Fuel Cells, Ylith Peck May 2022

Synthesis And Characterization Of Ternary Pt Nanoally Catalysts For Fuel Cells, Ylith Peck

Undergraduate Honors Theses

A hydrogen fuel cell is an electrochemical device that converts oxygen and hydrogen into electrical energy while producing water as the only by-product, which has attracted growing interest, especially in the automotive industry. This technology is efficient and has zero pollution to the environment, in contrast to the direct use of fossil fuels in combustion engines which produce pollution and greenhouse gas emissions. One of the key components for hydrogen fuel cells is the catalyst that operates at the cathode, which currently use platinum. Due to the scarce amount of platinum in the world, the manufacturing cost for fuel cells …


Investigating Ionic Current Rectification As A Means Of Controllable Drug Delivery Using Silica Nanoparticles And Nano Porous Membranes, Katie L. Nolan Apr 2022

Investigating Ionic Current Rectification As A Means Of Controllable Drug Delivery Using Silica Nanoparticles And Nano Porous Membranes, Katie L. Nolan

Honors College Theses

This project investigates a novel ionic current rectification (ICR) phenomenon created by the opening and closing of nanopores by charged silica nanoparticles (SNPs) under electrophoretic flow. This voltage-controlled opening and closing of the pores can be exploited to allow delivery of nicotine through the pores at programmable intervals. The ICR phenomenon was thoroughly investigated by varying pH, buffer concentration, SNP concentration, and applied voltage range. The mechanism was also verified by testing with a 2-, 3-, and 5-electrode system. Potential cake layer formation was demonstrated in a longer ICR test, and the implications of this on the drug delivery mechanism …


Collision-Induced Dissociation And Ion Mobility Mass Spectrometry Of Au30(S-Tbu)18 Nanoclusters, Christopher Hood Apr 2022

Collision-Induced Dissociation And Ion Mobility Mass Spectrometry Of Au30(S-Tbu)18 Nanoclusters, Christopher Hood

Honors Theses

Collision Induced Dissociation (CID) and Ion Mobility Mass Spectrometry (IM-MS) are methods used to understand the structural arrangement and stability of large molecules. In this study, the gold nanocluster Au30(S-tBu)18 was dissociated at varying Trap collision energies, and drift time vs mass spectrometry data was plotted to determine the order of cluster fragmentation. Comparing Au30(S-tBu)18 data to that of Au25(SCH2CH2Ph)18, the only current nanocluster published with IM-MS data, two distinctly different dissociation patterns were seen. Unlike the linear CID fragmentation of Au …


Optimizing The Fluorescent Quantum Yield Of Carbon Dots, Megan B. Prado Jan 2022

Optimizing The Fluorescent Quantum Yield Of Carbon Dots, Megan B. Prado

MSU Graduate Theses

Carbon dots (CDs) are a subclass of carbon nanomaterials that exhibit unique properties of fluorescence, photostability, low toxicity, and biocompatibility. These unique properties have enabled numerous applications including biosensing, heavy-metal detection, and pH-sensing, among others. Their optical properties can be modified via doping to produce increasingly fluorescent CDs after appropriate purification. Herein, doped CDs were synthesized in four bottom-up methods for comparison using sucrose or citric acid as carbon precursors. Varying hetero-atom dopants (N, S, B) were used in differing molar ratios. The pH-dependent fluorescence and fluorescent quantum yield (QY) were measured for each sample. Characterization was conducted using Fourier-Transform …


Biomimetic Synthesis Of Palladium Nanoparticles For Catalytic Application, Emily A. Groover Jan 2022

Biomimetic Synthesis Of Palladium Nanoparticles For Catalytic Application, Emily A. Groover

Electronic Theses and Dissertations

The synthesis of palladium nanoparticles (Pd NPs) using materials-directed peptides is a novel, nontoxic approach which exerts a high level of control over the particle size and shape. This biomimetic technique is environmentally benign, featuring nonhazardous ligands and ambient conditions. Nanoparticles are extremely reactive catalysts, boasting a large surface-to-volume ratio when compared to their bulk counterparts. The rational design of these nanoparticles using peptides has been very successful in aqueous environments, but no research has been done to apply it in organic systems. As such, the biomimetic synthesis of Pd NPs in an organic system is here investigated, with ethanol …