Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Selective Oxidation Of Alkenes In Air Catalyzed By Mn3o4 Nanoparticles, Brojo Kishor Shachib Dhali Dec 2021

Selective Oxidation Of Alkenes In Air Catalyzed By Mn3o4 Nanoparticles, Brojo Kishor Shachib Dhali

Dissertations and Theses

Catalytic oxidation is a process where compounds are oxidized using catalysts. Solid catalysts exhibit several advantages over homogeneous systems, such as catalyst recovery and excellent stability. Various supported transition-metal oxides (for example: CuO, ZnO, CeO2, Fe2O3 and WO3), metal nanoparticles (for example: Pd and Ru) and polyoxometalate clusters (for example: [W10O32]4-, [Mn2ZnW(ZnW9O34)2]10- and [XW12O40]n- (X = P, Si)) have been applied to selective oxidation of organic compounds, but high associated product conversion still remains a challenge. Recently, a number of materials containing Mn3O4 have been used successfully in different catalytic applications, such as degradation of phenols, reduction of nitrobenzenes, and …


Development Of Visible-Light-Mediated Photoredox Catalysis, Sarbjeet Kaur Dec 2021

Development Of Visible-Light-Mediated Photoredox Catalysis, Sarbjeet Kaur

Legacy Theses & Dissertations (2009 - 2024)

ABSTRACT


Catalytic Activity Of Molybdenum-Dioxo Complexes, Randy Tran Dec 2021

Catalytic Activity Of Molybdenum-Dioxo Complexes, Randy Tran

Graduate Theses and Dissertations

This dissertation details the development of rationally designed dioxomolybdenum catalyst active for deoxydehydration (DODH), the net reduction of diols and polyols into alkenes and dienes. Catalyst design involved variations on dioxomolybdenum(VI) supported by a dianionic meridional pincer ligand. Rational substrate scope was explored using aliphatic diols, aromatic diols, and biomass derived diols. Various reductants were tested for ability to catalyze the reaction. The substrate specific mechanism of DODH was explored utilizing NMR and in-situ infrared spectroscopy and important rate constants and rate determining steps were found to aid in the optimization of ideal reaction conditions. Catalytic activity was observed to …


Synthesis Of Fullerene Derivatives For Diverse Applications: From Catalysis To Photovoltaics, Olivia Fernandez-Delgado Aug 2021

Synthesis Of Fullerene Derivatives For Diverse Applications: From Catalysis To Photovoltaics, Olivia Fernandez-Delgado

Open Access Theses & Dissertations

AbstractFullerene functionalization has enabled the improvement in their solubility, optoelectronic, semiconductive, chemical and physical properties that allow their use in several fields such as photovoltaics, catalysis and for biological applications. Their good electron transporting properties have been widely studied in perovskite solar cell (PSC) devices and more recently, there have been more articles focused specifically on the molecular interactions of the fullerene functional groups with the perovskite layer which has allowed to obtain high power conversion efficiencies (PCE) of 25.5%. On the other hand, fullerenes are beginning to be studied as molecular catalysts for water splitting electrocatalytic processes, resulting in …


Electrochemical Characterization Of Surface-Immobilized Metal Nanostructures: Stability, Atomic Level Doping, Catalysis, And Sensing Applications., Badri Prasad Mainali Aug 2021

Electrochemical Characterization Of Surface-Immobilized Metal Nanostructures: Stability, Atomic Level Doping, Catalysis, And Sensing Applications., Badri Prasad Mainali

Electronic Theses and Dissertations

This dissertation has two main themes. The first theme involves voltammetric analysis of the stability of Au nanoparticles (NPs) under electrochemical and thermal treatment as a function of size, ligand stabilizer, and atomic composition. The second theme involves the use of Au NPs, electrophoretic deposition (EPD), and anodic stripping voltammetry (ASV) for electrochemical detection of analytes. The electrochemical size stability of 4.1, 15.1, and 50.3 nm average diameter Au NPs upon treatment with multiple electrochemical oxidation-reduction cycling in acidic electrolyte is monitored by observing changes in the peak oxidation potential (Ep) in ASV and the electrochemically measured surface …


Computational Design Of Two-Dimensional Transition Metal Dichalcogenide Alloys And Their Applications, John Douglas Cavin May 2021

Computational Design Of Two-Dimensional Transition Metal Dichalcogenide Alloys And Their Applications, John Douglas Cavin

Arts & Sciences Electronic Theses and Dissertations

The discovery of bronze as an alloy of copper and tin is arguably the earliest form of material design, dating back thousands of years. In contrast, two-dimensional materials are new to the 21st century. The research presented in this dissertation is at the intersection of alloying and two-dimensional materials. I specifically study a class of two-dimensional materials known as transition metal dichalcogenides (TMDCs). Because of the large number of transition metals, there are many combinations of TMDCs that can be alloyed, making experimental exploration of the phase space of possible alloys unwieldly. Instead, I have applied first-principles methods to study …


Small Molecule Activation By Transition Metal Complexes: Studies With Quantum Mechanical And Machine Learning Methodologies, Justin Kyle Kirkland May 2021

Small Molecule Activation By Transition Metal Complexes: Studies With Quantum Mechanical And Machine Learning Methodologies, Justin Kyle Kirkland

Doctoral Dissertations

One of the largest areas of study in the fields of chemistry and engineering is that of activation of small molecules such as nitrogen, oxygen and methane. Herein we study the activation of such molecules by transition metal compounds using quantum mechanical methods in order to understand the complex chemistry behind these processes. By understanding these processes, we can design and propose novel catalytic species, and through the use of data-driven machine learning methods, we are able to accelerate materials discovery.


Enhanced Electrochemical And Light-Driven Co2 Reduction By Incoporating Pendant Functionality In The Second-Coordination Sphere Of Molecular Catalysts, Sayontani Sinha Roy Jan 2021

Enhanced Electrochemical And Light-Driven Co2 Reduction By Incoporating Pendant Functionality In The Second-Coordination Sphere Of Molecular Catalysts, Sayontani Sinha Roy

Electronic Theses and Dissertations

With the increase in global population and rapid industrialization, a gigantic amount of greenhouse gases is being released into the atmosphere each year. The catastrophic effect of these accumulated greenhouse gases is driving global climate change and adversely impacting our ecosystem. Popularizing the traditional renewable energy sources (such as solar and wind energy) can mitigate the problem by cutting down anthropogenic CO2 emissions, which is the major contributor to this global problem. However, the intermittent nature of these energy sources is problematic to reliably power society throughout the year. Therefore, converting CO2 to various value-added chemicals with the aid of …


Advancements Toward Sustainable Solar Fuel Production Utilizing Reductive Homogeneous Electro- And Photocatalysis, Hunter Pratt Shirley Jan 2021

Advancements Toward Sustainable Solar Fuel Production Utilizing Reductive Homogeneous Electro- And Photocatalysis, Hunter Pratt Shirley

Electronic Theses and Dissertations

Molecular CO2 and H+ reductive catalysts, whether they be electro- or photocatalytic, have been shown to be possible routes of harnessing solar energy in a clean, renewable manner. There are few electrocatalysts operating at reasonable overpotentials to prove useful in artificial photosynthetic systems, and there are a number of environmental factors within these systems that have yet to be evaluated. Photo-driven catalysis is rare, difficult to control, and rarely provides high-value CO2 reduction products. I report herein an exceptionally low overpotential H+ reduction catalyst, a method of modulating electrocatalysts in-situ to improve performance, a first-of-its-kind mononuclear proton reduction photocatalyst, a …


Cobalt, Molybdenum, And Nickel Complexes, Natural Zeolites, Epoxidation, And Free Radical Reactions, Nicholas K. Newberry Jan 2021

Cobalt, Molybdenum, And Nickel Complexes, Natural Zeolites, Epoxidation, And Free Radical Reactions, Nicholas K. Newberry

Dissertations, Master's Theses and Master's Reports

Chapter 2 is based on the synthesis and study of the compounds of the bidentate ligand ((5-phenyl-1H-pyrazol-3-yl)methyl)phosphine oxide with molybdenum and cobalt as the transition metal. The complexes were analyzed via FTIR, NMR, UV-Vis, Fluorescence Spectroscopy, TGA, DFT, and XRD. Chapter 3 resulted in the synthesis of the complexes [Ni(II)SSRRL](PF6)2 and [Ni(II)SRSRL](Cl)(PF6) of which [Ni(II)SRSRL](Cl)(PF6) had not been previously analyzed. Both products were analyzed via FTIR, NMR, UV-Vis, CV, DFT, and XRD. Chapter 5 contains the results of the characterization and modification of 4 natural zeolites (AZLB-Na, AZLB-Ca, NM-CA, NV-Na) from the United States in an attempt to increase the …