Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Self-Assembled Dna Origami Templates For The Fabrication Of Electronic Nanostructures, Elisabeth Pound Gates Sep 2013

Self-Assembled Dna Origami Templates For The Fabrication Of Electronic Nanostructures, Elisabeth Pound Gates

Theses and Dissertations

An important goal of nanoscience is the self-assembly of nanoscale building blocks into complex nanostructures. DNA is an important and versatile building block for nanostructures because of its small size, predictable base pairing, and numerous sequence possibilities. I use DNA origami to design and fold DNA into predesigned shapes, to assemble thin, branched DNA nanostructures as templates for nanoscale metal features. Using a PCR-based scaffold strand generation procedure, several wire-like nanostructures with varying scaffold lengths were assembled. In addition, more complex prototype circuit element structures were designed and assembled, demonstrating the utility of this technique in creating complex templates. My …


Charging And Self-Assembly Of Fullerene Fragments, Michael V. Ferguson May 2013

Charging And Self-Assembly Of Fullerene Fragments, Michael V. Ferguson

Chemistry

Buckybowls are bowl-shaped aromatic polycyclic hydrocarbons that map onto the surface of fullerene molecules, such as C60 and C70, but lack their full closure. They are revered for their ability to undergo multiple reduction reactions, accepting several electrons, due to their degenerate and low energy LUMO orbitals. Corannulene (C20H10), the smallest buckybowl, is well known for its ability to accept up to four electrons. Many studies have been performed targeting preparation and characterization of corannulene anions using the NMR, ESR and UV-vis spectroscopic techniques. Corannulene has also been found to form a solid adduct with C60 without selectivity in its …


Metal-Organic And Supramolecular Architectures Based On Mechanically Interlocked Molecules, Isurika Rosini Fernando Apr 2013

Metal-Organic And Supramolecular Architectures Based On Mechanically Interlocked Molecules, Isurika Rosini Fernando

Dissertations

The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials.

Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, …


Assembly Of Surface Engineered Nanoparticles For Functional Materials, Xi Yu Feb 2013

Assembly Of Surface Engineered Nanoparticles For Functional Materials, Xi Yu

Open Access Dissertations

Nanoparticles are regarded as exciting new building blocks for functional materials due to their fascinating physical properties because of the nano-confinement. Organizing nanoparticles into ordered hierarchical structures are highly desired for constructing novel optical and electrical artificial materials that are different from their isolated state or thermodynamics random ensembles. My research integrates the surface chemistry of nanoparticles, interfacial assembly and lithography techniques to construct nanoparticle based functional structures. We designed and synthesized tailor-made ligands for gold, semiconductor and magnetic nanoparticle, to modulate the assembly process and collective properties of the assembled structures, by controlling the key parameters such as particle-interface …


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore …


Scanning Probe Investigations Of The Surface Self-Assembly Of Organothiols And Organosilanes Using Nanoscale Lithography, Tian Tian Jan 2013

Scanning Probe Investigations Of The Surface Self-Assembly Of Organothiols And Organosilanes Using Nanoscale Lithography, Tian Tian

LSU Doctoral Dissertations

Particle lithography and scanning probe lithography were applied to study the kinetics and mechanisms of surface self-assembly processes. Organothiols on Au(111) and organosilane on Si(111) were chosen as model systems for investigations at the nanoscale using atomic force microscopy (AFM). Fundamental insight of structure/property interrelationships and understanding the properties of novel materials are critical for developments with molecular devices. Methods using an AFM probe for nanofabrication have been applied successfully to prepare sophisticated molecular architectures with high reproducibility and spatial precision. The established capabilities of AFM-based nanografting were reviewed for inscribing patterns of diverse composition, to generate complicated surface designs …


Single Crystal To Single Crystal Polymerization Of A Columnar Assembled Diacetylene Macrocycle, Weiwei Xu Jan 2013

Single Crystal To Single Crystal Polymerization Of A Columnar Assembled Diacetylene Macrocycle, Weiwei Xu

Theses and Dissertations

Organic tubular materials have attracted lots of attentions for their potential applications as nanoscale fluidic transport systems, specific ion sensors, molecular sieves and confined molecular reaction containers. While conjugated polymers, due to delocalized Pi electrons, exhibit interesting solar cells and sensors applications. In this thesis, we developed a conjugated polymer which combines the attributes of conjugated polymers with tubular materials, which should have great potential to work as a sensing material.

We reproduced and scaled-up the synthesis of a polymerizable macrocycle 1 that contains two rigidly separated diacetylene units. We found that, through hydrogen bonding, 1 can assemble into columnar …