Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Magnetic Mineral Diagenesis In The River‐Dominated Inner Shelf Of The East China Sea, China, Can Ge, Weiguo Zhang, Chenyin Dong, Yan Dong, Jinyan Liu, Nguyen Thi Thu Hien, Huan Feng, Lizhong Yu Jan 2015

Magnetic Mineral Diagenesis In The River‐Dominated Inner Shelf Of The East China Sea, China, Can Ge, Weiguo Zhang, Chenyin Dong, Yan Dong, Jinyan Liu, Nguyen Thi Thu Hien, Huan Feng, Lizhong Yu

Department of Earth and Environmental Studies Faculty Scholarship and Creative Works

The inner shelf of the East China Sea is a river-dominated margin characterized by fine-grained mud deposits and a rapid sedimentation rate. Three short sediment cores (similar to 2.7m in length) were examined to characterize spatial variations in magnetic mineral diagenesis. The sediment cores were analyzed for sedimentation rates, magnetic properties, particle size distribution, organic carbon, and total sulfur content. The two more proximal cores with higher sedimentation rates (similar to 2.2cm/yr and similar to 0.96cm/yr) do not exhibit obvious effects of reductive dissolution of magnetite with increasing depth, which is consistent with their lower total sulfur content. The offshore …


Mass Loss And Chemical Structures Of Wheat And Maize Straws In Response To Ultravoilet-B Radiation And Soil Contact, Guixiang Zhou, Jiabao Zhang, Jingdong Mao, Congzhi Zhang, Lin Chen, Xiuli Xin, Bingzi Zhao Jan 2015

Mass Loss And Chemical Structures Of Wheat And Maize Straws In Response To Ultravoilet-B Radiation And Soil Contact, Guixiang Zhou, Jiabao Zhang, Jingdong Mao, Congzhi Zhang, Lin Chen, Xiuli Xin, Bingzi Zhao

Chemistry & Biochemistry Faculty Publications

The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for …