Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

USF Tampa Graduate Theses and Dissertations

Theses/Dissertations

2014

Topology

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Crystal Engineering Of Functional Metal-Organic Material Platforms For Gas Storage And Separation Applications, Sameh Khamis Elsaidi Sep 2014

Crystal Engineering Of Functional Metal-Organic Material Platforms For Gas Storage And Separation Applications, Sameh Khamis Elsaidi

USF Tampa Graduate Theses and Dissertations

Metal-organic materials (MOMs) represent a unique class of porous materials that captured a great scientific interest in various fields such as chemical engineering, physics and materials science. They are typically assembled from metal ions or metal clusters connected by multifunctional organic ligands. They represent a wide range of families of materials that varied from 0D to 3D networks: the discrete (0D) structures exemplified by metal-organic polyhedra (MOPs), cubes and nanoballs while the polymeric 1D, 2D and 3D structures exemplified by coordination polymers (CPs). Indeed, the porous 3D structures include metal-organic frameworks (MOFs), porous coordination polymers (PCPs) and porous coordination networks …


[M3(Μ3-O)(O2cr)6] And Related Trigonal Prisms: Versatile Molecular Building Blocks For 2-Step Crystal Engineering Of Functional Metal-Organic Materials, Alexander Schoedel Mar 2014

[M3(Μ3-O)(O2cr)6] And Related Trigonal Prisms: Versatile Molecular Building Blocks For 2-Step Crystal Engineering Of Functional Metal-Organic Materials, Alexander Schoedel

USF Tampa Graduate Theses and Dissertations

Metal-organic materials (MOMs) assembled from metal-based building blocks and organic linkers have attracted much interest due to their large pore dimensions and their enormous structural diversity. In comparison to their inorganic counterparts (zeolites), these crystalline materials can be easily modified to tailor pore dimensions and functionality for specifically targeted properties.

The work presented herein encompasses the development of a synthetic 2-step process for the construction of novel families of MOMs or 'platforms' and allow us exquisite design and control over the resulting network topologies. Examples of cationic mesoporous structures were initially exploited, containing carboxylate based centers connected by metal-pyridine bonds. …