Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Molecular Processes In Astrophysics: Calculations Of H + H2 Excitation, De-Excitation, And Cooling, Matthew Kelley Dec 2012

Molecular Processes In Astrophysics: Calculations Of H + H2 Excitation, De-Excitation, And Cooling, Matthew Kelley

UNLV Theses, Dissertations, Professional Papers, and Capstones

The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium …


Elemental Contributions From Minor And Major Constituents Of Bone On The Separation Of Radiostrontium, Ashlee Rae Dailey Dec 2012

Elemental Contributions From Minor And Major Constituents Of Bone On The Separation Of Radiostrontium, Ashlee Rae Dailey

UNLV Theses, Dissertations, Professional Papers, and Capstones

While many methods exist to separate and analyze radionuclides from a variety of environmental matrices, the performance of all of these methods is often limited by other interfering constituents that are consistently found in most of these samples. The presence of such constituents can significantly reduce the recovery of the radioisotopes of interests and lead to incomplete separations.

Strontium has the same oxidation state and a similar atomic radius as calcium and is therefore readily able to substitute for calcium in lattice sites. This similarity in behavior leads to the preferential accumulation of strontium in newly formed bone. The study …


Anti-Germinants As A New Strategy To Prevent Clostridium Difficile Infections, Amber Janece Howerton Dec 2012

Anti-Germinants As A New Strategy To Prevent Clostridium Difficile Infections, Amber Janece Howerton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Clostridium difficileinfections (CDI) have emerged as a leading cause of hospital-associated complications. CDI is the major cause of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. The infective form of C. difficileis the spore, a dormant and hardy structure that forms under stress. Germination of C. difficile spores into toxin producing bacteria in the GI tract of susceptible patients is the first step in CDI establishment. Patient susceptibility occurs with a disruption of the natural gut microbiota by broad-spectrum antibiotics. Antibiotic treatments usually resolve CDI but refractory cases are on the rise. Of great concern is the …


Synthesis And Characterizations Of Pyridinium Salts Including Poly(Pyridinium Salt)S And Their Applications, Tae Soo Jo Dec 2012

Synthesis And Characterizations Of Pyridinium Salts Including Poly(Pyridinium Salt)S And Their Applications, Tae Soo Jo

UNLV Theses, Dissertations, Professional Papers, and Capstones

Pyridinium salts, both molecular and polymeric, are an interesting class of multifunctional materials that exhibit liquid-crystalline and light-emitting properties. Moreover, their properties can be easily tuned by introducing new types of anions or by modifying their chemical structures. This dissertation describes synthesis and characterization of poly(pyridinium salt)s containing macrocounterions and fluorene moieties in their backbones, synthesis and characterization of nanocomposites of poly(pyridinium salt)s with single-walled carbon nanotubes via non-covalent interactions, and synthesis and characterizations of pyridinium salts having different aliphatic linkages and their application in organic acid sensing.

First, all of these ionic polymers were prepared by either ring-transmutation or …


Recycling And Reuse Of Radioactive Materials, Thomas Joseph O'Dou Dec 2012

Recycling And Reuse Of Radioactive Materials, Thomas Joseph O'Dou

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique program capable of turning out graduates that have an understanding of contamination and dose control techniques that complement their knowledge of the elements that they work with. The Program has also adopted a radionuclide recovery and reuse program that has provided materials from other universities, government agencies, and private companies …


Molecular Forensic Science Analysis Of Nuclear Materials, Dallas Reilly Dec 2012

Molecular Forensic Science Analysis Of Nuclear Materials, Dallas Reilly

UNLV Theses, Dissertations, Professional Papers, and Capstones

Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared …


Evaluating Actinide Sorption To Graphite With Regards To Triso Repository Performance, Corey Christopher Keith Aug 2012

Evaluating Actinide Sorption To Graphite With Regards To Triso Repository Performance, Corey Christopher Keith

UNLV Theses, Dissertations, Professional Papers, and Capstones

Graphite has the potential for inclusion in nuclear waste for disposal in waste repository settings. Implementation of High Temperature Gas-cooled Reactors contributes to this potential through use of TRISO fuel, if direct disposal of the graphite matrix surrounding the fuel is employed. The inclusion of the large mass and volume in the TRISO fuel waste form differs significantly from used light water reactor fuel waste forms, requiring new performance models to describe the behavior in a repository setting. The purpose of this study is to evaluate the potential for the graphite to improve actinide, specifically uranium and neptunium, retardation from …