Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Separation Of Nitrito- And Nitropentamminecobalt (Iii) Chloride By High Performance Liquid Chromatography, Tisha Hutchinson Dec 2016

Separation Of Nitrito- And Nitropentamminecobalt (Iii) Chloride By High Performance Liquid Chromatography, Tisha Hutchinson

Seton Hall University Dissertations and Theses (ETDs)

Reversed phase high performance liquid chromatography, chosen because of its ability to collect many data points over a long period of time with minimal involvement, was used to separate pentaamminenitritocobalt(III) chloride and pentaamminenitrocobalt(III) chloride. Pentaamminenitritocobalt(III) chloride was prepared, made into a concentrated solution, divided into aliquots and allowed to isomerize to pentaamminenitrocobalt(III) chloride over a period of twelve to eighteen hours. An injection was made approximately every forty-five minutes. The samples were analyzed at three wavelengths, 254 nm, 460 nm and 490 nm. The absorbance was collected and was used to determine the kinetics of the reaction.

The isomerization from …


Polyol Induced Partitioning Of Essential Oils In Aqueous Organic Solvent Mixtures, Thomas Delmastro Dec 2016

Polyol Induced Partitioning Of Essential Oils In Aqueous Organic Solvent Mixtures, Thomas Delmastro

Seton Hall University Dissertations and Theses (ETDs)

Polyol Induced Extraction (PIE) was developed and patented at Seton Hall University by Drs. John R. Sowa Jr., Wyatt R. Murphy, and Mithilesh Deshpande. It was originally discovered and implemented as a method to recycle and reuse waste acetonitrile during the production shortage in 2008. Through the use of PIE, a solvent mixture containing acetonitrile and water can be separated by employing a polyol mass separating agent, which induces a phase separation. The system is separated into its corresponding aqueous and organic phases, with the organic phase being a highly purified organic liquid. Based on the successful experimental results that …


Structural Analysis Of Transient Receptor Potential Vanilloid Type 1 (Trpv1) Channel Protein And Proline Mimics Using Computational Techniques, Kelly A. Raymond May 2016

Structural Analysis Of Transient Receptor Potential Vanilloid Type 1 (Trpv1) Channel Protein And Proline Mimics Using Computational Techniques, Kelly A. Raymond

Seton Hall University Dissertations and Theses (ETDs)

Chapter I

The Transient Receptor Potential (TRP) family of ion channels encompasses more than 30 members, which are expressed in many different tissues and cell types.1 Transient Receptor Potential Vanilloid Type 1 (TRPV1) is part of the TRP family gated by vanilloids, heat and protons.2 Molecular modeling will be used in order obtain structural and functional data on TRPV1 in its membrane bound environment. In particular, the transmembrane and C-terminal domain regions of TRPV1 are of particular interest. The S1-S4 region of the channel is the putative ligand-binding segment, while the C-terminal domain is suggested to respond to …


Synthesis And Evaluation Of Biological Activity Of A Potential Immunomodulatory Zwitterionic Polysaccharide, Vikram Basava May 2016

Synthesis And Evaluation Of Biological Activity Of A Potential Immunomodulatory Zwitterionic Polysaccharide, Vikram Basava

Seton Hall University Dissertations and Theses (ETDs)

The gram-negative anaerobic bacterium Bacteroides fragilis is an integral component of the normal gastrointestinal flora. The bacterium colonizes the intestinal tract of human beings as it has no reservoir other than mammals. An unprecedented proportion of the genomic DNA of B. fragilus is involved in the production of capsular polysaccharides. These capsular polysaccharides are important virulence factors in most extracellular bacterial pathogens. Eight of these polysaccharides have been identified thus far, out of which two were found to be zwitterionic polymers, PSA1 and PSA2. PSA1 was found to stimulate T-cell lineage of the immune system because of the dual charge …


Functionalization Of Metal Oxide Surfaces Through Chemical Reactions And Physical Adsorption, Gabriel C. Graffius May 2016

Functionalization Of Metal Oxide Surfaces Through Chemical Reactions And Physical Adsorption, Gabriel C. Graffius

Seton Hall University Dissertations and Theses (ETDs)

The synthesis of high surface area metal oxides is an area of extensive research with potential applications in catalysis, adsorption, and materials chemistry. The functionalization of a material’s surface can dramatically change its physical and chemical properties. The research described herein is built on the foundation of traditional techniques used for synthesis, characterization, and functionalization of metal oxides and develops new mechanisms and materials for the functionalization of surfaces.

We began with Methyl-terminated poly(dimethylsiloxanes) (PDMSs), which are typically considered to be inert and not suitable for surface functionalization reactions because of the absence of readily hydrolysable groups. Nevertheless, these siloxanes …


Epoxy Siloxane Self-Cleaning Coating Using F64pczn/Tio2 Photocatalyst Composite, James F. Sullivan May 2016

Epoxy Siloxane Self-Cleaning Coating Using F64pczn/Tio2 Photocatalyst Composite, James F. Sullivan

Seton Hall University Dissertations and Theses (ETDs)

A new photocatalytic composite powder incorporated into a siloxane epoxy polymer has been shown to yield a highly efficient self-cleaning coating. The composite, which makes greater use of light in the visible/near-infrared (NIR) region, was prepared by coating a nano-particle photocatalytic TiO2 with 3% w/w of F64PcZn photosensitizer resulting in a dark green powder. The F64PcZn/P25 TiO2 composite exhibited a greater photo-induced degradation of methyl red, a model surface contaminant, compared to traditional nano-particle photocatalytic TiO2. Singlet oxygen (1Δg 1O2), generated form the F64PcZn, …


Application Of An Ionic Liquid Column To The Analysis Of Flavor And Fragrance Ingredients, Nicole L. Curto May 2016

Application Of An Ionic Liquid Column To The Analysis Of Flavor And Fragrance Ingredients, Nicole L. Curto

Seton Hall University Dissertations and Theses (ETDs)

Traditional, polar (polyethylene glycol/wax) stationary phase gas chromatography columns pose challenges for flavor and fragrance analysis particularly in regards to thermal instability at high temperatures, degradation when exposed to water, unchanging selectivity, and relatively short shelf lives. Recently, capillary columns using ionic liquids as stationary phases have become available. Ionic liquid columns offer a potential combination of high polarity and high temperature stability with unique selectivity. An in depth discussion about the history and development of column phase characterization, with specific emphasis on selectivity and polarity, will allow for a critical look at the polarity scale currently employed to characterize …