Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Dynamic Metal-Ligand Interactions In Semiconducting Π-Conjugated Materials, Peter Blake Joseph St Onge Jan 2024

Dynamic Metal-Ligand Interactions In Semiconducting Π-Conjugated Materials, Peter Blake Joseph St Onge

Electronic Theses and Dissertations

Over the years, the development of materials has seen a vast amount of expansion into a variety of disciplines which have demonstrated usefulness in a large span of applications. One of these new and developing themes is the use of metals and ligands which are incorporated into polymers to modify their properties, which can enable different desired properties. Incorporation of metal-ligand complexes in materials chemistry has proven to be an area of rising interest, however, many of these interactions and systems remained completely unexplored. Understanding the key fundamental principles of how these materials can be changed and modified through metal-ligand …


Functionalized 𝜹-Hexalactones (Fdhls): Bio-Derivable Monomers To Synthesize Renewable Polyester Thermoplastics, Atik Faysal Mar 2022

Functionalized 𝜹-Hexalactones (Fdhls): Bio-Derivable Monomers To Synthesize Renewable Polyester Thermoplastics, Atik Faysal

Electronic Theses and Dissertations

Most thermoplastics are made from limited fossil-fuel sources and these plastics have very deleterious impacts on the environment. Finding a renewable source to synthesize new thermoplastic polymers with tunable properties like biodegradability, heat resistance, and moisture resistance are ongoing research interests. Lignocellulosic biomass is a promising renewable feedstock for biobased monomers and polymers production. In this work, functionalized 𝛿-hexalactone (FDHL) monomers are hypothesized to be synthesizable from lignocellulosic sourced hydroxymethyl furfural (HMF) and lignin-derived pendant groups, generating a variety of aliphatic polyesters and potentially overcome current polymer challenges. Achieving a higher glass transition temperature (Tg) is one of …


Design, Synthesis And Applications Of Nanoparticles In Suppression Of Mosquito-Born Flaviviridae Viruses, Maria R. Blahove Jan 2021

Design, Synthesis And Applications Of Nanoparticles In Suppression Of Mosquito-Born Flaviviridae Viruses, Maria R. Blahove

Electronic Theses and Dissertations

Recently, nanoparticles have become an origin of exploration in the chemistry field due to their unique medical uses. The current drug delivery models of nanoparticles often include a metal base with a drug conjugated to its surface. However this raises concerns regarding toxicity. A novel approach to solving this dilemma is the development of nanosized biocompatible polymer-based micelles, created from PEG-PCL-PEG triblock polymer, and formed around a drug of choice. The goal is to create a drug carrier nanoparticle system that is labile at a specific intracellular pH, without undue toxicity to the cell. This creates a drug-loaded nanoparticle that …


Advancements In Bio-Based Novel (Co)Monomers For Polymeric Materials, Khristal Anne Monroe Jan 2021

Advancements In Bio-Based Novel (Co)Monomers For Polymeric Materials, Khristal Anne Monroe

Electronic Theses and Dissertations

Most current research in the area of sustainable and environmentally friendly materials relate to the use of renewable sources for the fabrication of bio-based polymers and composites. Using plant-based derivatives is a common strategy. Pine sap can be distilled into turpentines (light fraction) and pine rosin (heavy fraction). Pine rosin is obtained as a brittle solid and its major component is abietic acid. This project aims at investigating a synthetic approach for the synthesis of a pine rosin-based polymer that can be potentially used for manufacturing a collection device for pine sap. The synthetic strategy consisted in the preparation of …


Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen Aug 2017

Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen

Electronic Theses and Dissertations

The research here deals with the conversion of 5-hydroxymethylfurfural (HMF) into a tunable polymer. HMF is a known derivative that can be acquired from biomass via hydrolysis of cellulose followed by isomerization and finally selective dehydration. The process considered here is being developed to create tunable polymers from HMF and involves several different steps, three of which are covered here. The first step, an etherification, is the reaction of HMF with an alcohol. This step is significant because in this step the R-group from the alcohol is added to HMF and the branching portion formed is carried over to the …


Synthesis And Characterization Of Three New Tetrakis(N-Phenylacetamidato) Dirhodium(Ii) Nitrile Complexes, Nkongho Atem-Tambe Dec 2013

Synthesis And Characterization Of Three New Tetrakis(N-Phenylacetamidato) Dirhodium(Ii) Nitrile Complexes, Nkongho Atem-Tambe

Electronic Theses and Dissertations

Three new tetrakis [Rh2(PhNCOCH3)4·xNCR] (R = {2-CH3}C6H4 (x=2), R = {3-CH3}C6H4 (x=1), R = (3-CN)C6H4∞ (x=1)) complexes have been synthesized and characterized. These complexes were characterized by IR and 1H NMR spectroscopies and X-ray crystallography which solved with R1<0.05.

[Rh2(PhNCOCH3)4·2NC{2-CH3}C6H4] was triclinic (a=9.79Å, b=14.79Å, c=16.36Å, α=103.84⁰, β=99.17⁰, γ=99.77⁰, P-1(#2), μCN=2227.78cm-1, Rh-Rh=2.42Å, N-C=1.13Å, 1.14Å, Rh-N=2.34Å, 2.35Å, Rh-N-C=151.6⁰, 152.5⁰, Rh-Rh-N=173.0⁰, 174.6⁰).

[Rh2(PhNCOCH3)4 …


Fabrication Of Functional Nanostructures Using Polyelectrolyte Nanocomposites And Reduced Graphene Oxide Assemblies, Anindarupa Chunder Jan 2010

Fabrication Of Functional Nanostructures Using Polyelectrolyte Nanocomposites And Reduced Graphene Oxide Assemblies, Anindarupa Chunder

Electronic Theses and Dissertations

A wide variety of nanomaterials ranging from polymer assemblies to organic and inorganic nanostructures (particles, wires, rods etc) have been actively pursued in recent years for various applications. The synthesis route of these nanomaterials had been driven through two fundamental approaches - 'Top down' and 'Bottom up'. The key aspect of their application remained in the ability to make the nanomaterials suitable for targeted location by manipulating their structure and functionalizing with active target groups. Functional nanomaterials like polyelectrolyte based multilayered thin films, nanofibres and graphene based composite materials are highlighted in the current research. Multilayer thin films were fabricated …