Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Dissertations and Theses

Transfer RNA

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Investigation In To The Stabilizing Effects Of The Modified Base Archaeosine In Trna And The Identification Of The Fluorescent Product Of Base Treatment Of Nad(P)+ Cofactors, Ben Turner Jun 2017

Investigation In To The Stabilizing Effects Of The Modified Base Archaeosine In Trna And The Identification Of The Fluorescent Product Of Base Treatment Of Nad(P)+ Cofactors, Ben Turner

Dissertations and Theses

This dissertation covers two projects linked by their involvement in the modification of tRNA bases.

The first project focused on an investigation of a role for the modified base Archaeosine, the ubiquitous modification in tRNA in the archaeal domain. Initial work was performed on a set of in vitro prepared tRNA modified to feature either the canonical guanine base at position 15, preQ0 (TGT product) or Archaeosine (ArcS product). There was very little difference in the thermal stability of tRNAs containing these modifications in the halophilic H. volcanii tRNASer or E. coli tRNAGln. In tRNAGln …


Quef And Quef-Like: Diverse Chemistries In A Common Fold, Adriana Bon Ramos Aug 2016

Quef And Quef-Like: Diverse Chemistries In A Common Fold, Adriana Bon Ramos

Dissertations and Theses

The tunneling fold (T-Fold) superfamily is a small superfamily of enzymes found in organisms encompassing all kingdoms of life. Seven members have been identified thus far. Despite sharing a common three-dimensional structure these enzymes perform very diverse chemistries.

QueF is a bacterial NADPH-dependent oxidoreductase that catalyzes the reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ0) to a primary amine (preQ1) in the queuosine biosynthetic pathway. Previous work on this enzyme has revealed the mechanism of reaction but the cofactor binding residues remain unknown. The experiments discussed herein aim to elucidate the role of residues lysine 80, …


Discovery And Characterization Of The Proteins Involved In The Synthesis Of N⁶-Threonylcarbamoyl Adenosine, A Nucleoside Modification Of Trna, Christopher Wayne Deutsch Jul 2016

Discovery And Characterization Of The Proteins Involved In The Synthesis Of N⁶-Threonylcarbamoyl Adenosine, A Nucleoside Modification Of Trna, Christopher Wayne Deutsch

Dissertations and Theses

N6-threonylcarbamoyl adenosine (t6A) is a universally conserved tRNA modification found at position 37 of tRNAs which decode ANN codons. Structural studies have implicated its presence as a requirement for the disruption of a U-turn motif in certain tRNAs, leading to the formation of properly structured anticodon stem loop. This structure is proposed to enhance the base pairing between U36 of tRNA and A1 of the codon which aids in translational frame maintenance.

Despite significant effort since its discovery in the 1970s the enzymes involved in its biosynthesis remained undiscovered. Bioinformatic analysis identified two proteins as likely …


The Characterization Of Trna Modifying Enzymes S-Adenosylmethionine : Trna Ribosyltransferase-Isomerase (Quea) And A Novel Type I Gtp Cyclohydrolase, Shilah Amal Bonnett Oct 2007

The Characterization Of Trna Modifying Enzymes S-Adenosylmethionine : Trna Ribosyltransferase-Isomerase (Quea) And A Novel Type I Gtp Cyclohydrolase, Shilah Amal Bonnett

Dissertations and Theses

Queuosine is a hypermodified nucleoside located in the wobble position of bacterial and eukaryotic tRNAs coding for Asp, Tyr, His and Asn. The biosynthesis involves the participation of S-adenosyl-methionine:tRNA ribosyltransferase-isomerase (QueA) and a GTP Cyclohydrolase-I. QueA catalyzes the transfer and isomerization of the ribosyl moiety from AdoMet to preQ1 modified tRNA. Substrate analogs of AdoMet were used to elucidate important substrate-enzyme interactions and to test key steps in the proposed chemical mechanism. Replacing AdoMet with SeAdoMet had little effect upon substrate binding but exhibited 30-fold reduction in kcat, consistent with deprotonation at C-5' as the first catalytic step. 7-deazaAdoMet failed …