Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Combustion Soot Nanoparticles: Mechanism Of Restructuring And Mechanical Properties, Ali Hasani Dec 2022

Combustion Soot Nanoparticles: Mechanism Of Restructuring And Mechanical Properties, Ali Hasani

Dissertations

Soot, a product of incomplete combustion of fossil fuels, is a global warming agent. The effect of soot particles on climate depends on their morphology. Freshly released soot particles are fractal lacey aggregates, but they often appear collapsed in atmospheric samples collected away from emission sources. A body of work has concluded that the collapse is caused by liquid shells when they form by vapor condensation around soot aggregates. However, some recent studies argue that soot remains fractal even when engulfed by the shells, collapsing only when the shells evaporate. To reconcile this disagreement, the effects of the condensation and …


Synthetic Amphiphiles As Antibiotic Potentiators, Helena Spikes Nov 2022

Synthetic Amphiphiles As Antibiotic Potentiators, Helena Spikes

Dissertations

Antibiotic resistance has become a massive threat to modern medicine. Bacteria acquire resistance either through genetic mutations or mobile genetic elements, such as plasmids. The growing resistance crisis is exacerbated by over-prescription of antibiotics and improper use. As antimicrobial resistance becomes more widespread, superbugs (bacteria resistant to more than one class of drug) have evolved. Since few new drugs reach clinical trials and even fewer are approved by the FDA, we must find a way to make existing drugs more potent. One technique to accomplish this is by using combination therapy. By administering two or more drugs at a time, …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


Novel Thioglycosides As Versatile Glycosyl Donors For Oligosaccharide Synthesis, Ganesh Shrestha Oct 2022

Novel Thioglycosides As Versatile Glycosyl Donors For Oligosaccharide Synthesis, Ganesh Shrestha

Dissertations

This thesis is dedicated to the development of new methodologies for efficient synthesis of carbohydrate building blocks and their application to chemical glycosylation. S-Indolyl (SIn) anomeric moiety was investigated as a new leaving group. Understanding of the reaction pathways for the SIn moiety activation was achieved via the extended mechanistic study. The activation profile of indolylthio glycosides required large excess of activators. This drawback was partially addressed by the development of N-alkylated SInR derivatives. The activation process was studied by NMR and the increased understanding of the mechanism led to a discovery of different activation pathways taking place with …


Synthesis Of Novel Dna-Binding Polyamides To Prevent Cancer-Related Gene Overexpression, Huy Q. Nguyen Oct 2022

Synthesis Of Novel Dna-Binding Polyamides To Prevent Cancer-Related Gene Overexpression, Huy Q. Nguyen

Dissertations

Pyrrole-imidazole polyamides (PIPs) are nanomolecular compounds designed to fit in the tight space of DNA minor grooves. As analogs of Netropsin and Distamycin A, PIPs are specifically designed to recognize the base pairs of DNA sequences. PIPs have many biological applications, such as regulating gene expression, biochemistry pathway regulations, and suppressing the development of cancer cells. SETMAR gene is the chimeric fusion of the SET domain with the mariner transposase. Its protein (Metnase) has functions involving DNA repairs in the NHEJ pathway, regulating gene expression, DNA decatenation, etc. Despite not having an active transposable element, SETMAR still has an unknown …


Cultivating Teacher Expertise In The Landscape Of Green Chemistry: The Development Of Pedagogical Content Knowledge In Beyond Benign’S Lead Teacher Program, Philip Charles Nahlik Oct 2022

Cultivating Teacher Expertise In The Landscape Of Green Chemistry: The Development Of Pedagogical Content Knowledge In Beyond Benign’S Lead Teacher Program, Philip Charles Nahlik

Dissertations

Chemistry Education, Green Chemistry, Pedagogical Content Knowledge, Professional Learning Communities, Sustainability, Teacher Training


Investigation Of Carbon Dioxide Oxidation Reaction Pathways On Rh(111) Via Reflection Absorption Infrared Spectroscopy (Rairs), Elizabeth A. Jamka Oct 2022

Investigation Of Carbon Dioxide Oxidation Reaction Pathways On Rh(111) Via Reflection Absorption Infrared Spectroscopy (Rairs), Elizabeth A. Jamka

Dissertations

CO oxidation, RAIRS, Rh(111), Surface Science, UHV


Evaluating The Impact Of Submarine Groundwater Discharge On Nutrients And Trace Elements In Coastal Systems: The Examples Of The Tuckean Swamp (Australia) And The Mississippi Sound (Usa), Amy Moody Oct 2022

Evaluating The Impact Of Submarine Groundwater Discharge On Nutrients And Trace Elements In Coastal Systems: The Examples Of The Tuckean Swamp (Australia) And The Mississippi Sound (Usa), Amy Moody

Dissertations

Submarine groundwater discharge (SGD) is the advective flow of both fresh terrestrial groundwater and recirculating seawater through aquifer sediments, which is released into the coastal ocean. In this dissertation, I evaluated the impact of SGD on the distributions and input of trace metals and nutrients. In the Tuckean Swamp, an estuary in Australia dominated by coastal acid sulfate soils, I determined the impact of groundwater on Ba and U during the flood season, when the local aquifer is flushed out after a rapid increase in water table elevation. For Ba and U, groundwater contributed up to 18 and 66 % …


A Study Of Red Snapper (Lutjanus Campechanus) Ecology In The Northern Gulf Of Mexico And The Effect Of Variable River Outflow Using Stable Isotope Analysis Of The Food Web And Eye Lenses, Caitlin C. Slife Aug 2022

A Study Of Red Snapper (Lutjanus Campechanus) Ecology In The Northern Gulf Of Mexico And The Effect Of Variable River Outflow Using Stable Isotope Analysis Of The Food Web And Eye Lenses, Caitlin C. Slife

Dissertations

In the Mississippi Bight and surrounding waters, river outflow impacts the basal resources of the Red Snapper food web, altering carbon sources and impacting prey and predator isotopes. In this study, the impact of riverine outflow on nutrients, particulate organic matter (POM), and physical water parameters on Red Snapper and their food web was analyzed using stable isotope and stomach content analysis over 5 years. The Mississippi, Pearl, Pascagoula, and Mobile rivers were included in the analysis of river impact. The Mississippi and Mobile rivers were found to significantly impact nutrients and POM in the region. River outflow was also …


Designing Dynamic And Degradable Polymeric Materials With Thiol-X Chemistries, Reese Sloan Jul 2022

Designing Dynamic And Degradable Polymeric Materials With Thiol-X Chemistries, Reese Sloan

Dissertations

With plastic production poised to increase in coming years, there arises a need to develop new polymeric materials designed to combat the global pollution crisis. A commonly utilized approach in addressing this challenge is to employ a responsive functional moiety into the polymer architecture. Thiol-X reactions, a commonly utilized class of “click” reactions, have garnered broad implementation in new stimuli-responsive materials. This work specifically focuses on utilizing radical-mediated thiol-ene coupling and base-catalyzed thiol-isocyanate reactions to develop a library of ternary thiol-ene/thiourethane covalent adaptable networks (CANs) and hydrolytically labile poly(thioether ketal) thermoplastics. CANs are a class of network materials capable of …


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett Jun 2022

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated. It …


Analysis Of The Zebrafish Olfactory System Using Immunohistochemistry And Enhanced Techniques Of Desorption Electrospray Ionization Mass Spectrometry (Desi-Ms), Tara Lynn Maser Jun 2022

Analysis Of The Zebrafish Olfactory System Using Immunohistochemistry And Enhanced Techniques Of Desorption Electrospray Ionization Mass Spectrometry (Desi-Ms), Tara Lynn Maser

Dissertations

Desorption electrospray ionization (DESI-MS) is an ambient ionization technique where the sample is analyzed directly from a surface with very minimal sample preparation under ambient conditions and follows ESI-like ionization mechanisms. DESI-MS has proven powerful in analyzing or imaging lipids and other small molecules directly from biological samples and even allows for subsequent histological staining and analyses. However, DESI-MS is less widely used for protein analysis due to a lack of sensitivity and the complex diversity of proteins in biological samples.

A major goal of this research has been to obtain new neurobiological knowledge by combining histology and mass spectrometry …


The Design, Synthesis, And Characterization Of Copper-Based Metal-Organic Frameworks For Their Investigation Against Cancer And Their Effect As Anti-Microbial Agents, Sandy Elmehrath Jun 2022

The Design, Synthesis, And Characterization Of Copper-Based Metal-Organic Frameworks For Their Investigation Against Cancer And Their Effect As Anti-Microbial Agents, Sandy Elmehrath

Dissertations

A wide range of nanomaterials have been developed for biomedical applications, such as drug delivery, biomedical imaging, and sensors. Nanomaterials can include nanoparticles (NPs) and nanofibers with various dimensions that are both natural and synthetic. A successful nanomaterial, for use in biological applications, is characterized by its biocompatibility, biodegradability, intrinsic high surfaces area, high interconnected porosity, and functionality. These features were achieved with the development of metal-organic framework (MOF) nanostructures. MOFs are assemblies of metal ions and organic linkers that are built into different geometries and can exist in all dimensions (up to 3-D). The choice of linkers with well-defined …


Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao May 2022

Atmospheric Mercury Chemistry: Detection, Kinetics, And Mechanism, Na Mao

Dissertations

The presence of mercury in the environment is of global concern due to its toxicity. The atmosphere is an important transient reservoir for mercury released by human activities and natural sources. The knowledge of atmospheric mercury chemistry is critical for understanding the global biogeochemical cycle. In the atmosphere, mercury primarily exists in three forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM). Over the last decade, the existing knowledge of mercury cycle has dramatically changed: (1) There has been increasing evidence that current detection methods do not accurately quantify gaseous oxidized mercury and a technique which …


Development Of Novel Mass Spectrometric Methods For Reaction Screening, Oligosaccharide Detection, And Nitrosamine Quantitation, Qi Wang May 2022

Development Of Novel Mass Spectrometric Methods For Reaction Screening, Oligosaccharide Detection, And Nitrosamine Quantitation, Qi Wang

Dissertations

Benefitting from its high detection sensitivity and specificity, mass spectrometry (MS) has become a powerful technique in academia and industry. The aim of this dissertation study is to develop new mass spectrometric methods for organic reaction screening, detection of oligosaccharide/glycan in complex matrices, and nitrosamine absolute quantitation.

First, an electrochemistry/mass spectrometry (EC/MS) platform is built to generate an N-cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes, which leads to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N-cyclopropylanilines and alkenes. Net redox neutral electrosynthesis is quite rare in synthetic organic …


Bis(Tryptophan) Amphiphiles: Design, Synthesis And Efficacy As Antimicrobial Agents, Michael Mckeever Apr 2022

Bis(Tryptophan) Amphiphiles: Design, Synthesis And Efficacy As Antimicrobial Agents, Michael Mckeever

Dissertations

Amphiphiles play important roles in nature. These molecules contain both hydrophilic and hydrophobic regions, leading to some astonishing properties. The lipid bilayer of the cell membrane is a fascinating organization of amphiphilic phospholipids. Natural and synthetic amphiphiles, such as antimicrobial peptides, interact with the cell membrane. Such interactions can impact transport of molecules across the cell membrane, disrupting cell functions. In this work, a library of tryptophan-containing amphiphiles was synthesized and their antimicrobial properties were explored.

First, a library of bis(tryptophan) amphiphiles was synthesized. Preparation included a coupling reaction of a diamine with tryptophan residues, via their carboxy-termini, at …


Hydrolytically Degradable Thermosets With Tunable Degradation Profiles Via Ketal-Based Crosslinks, Benjamin Alameda Apr 2022

Hydrolytically Degradable Thermosets With Tunable Degradation Profiles Via Ketal-Based Crosslinks, Benjamin Alameda

Dissertations

Thermoset polymer networks are ubiquitous in the construction of high-performance materials due to their excellent mechanical properties, solvent resistance, and thermomechanical performance. However, the crosslinked structure that instills these materials with favorable performance also makes them incredibly resistant to degradation and are nearly impossible to recycle – adding to the ever-growing problem of plastic pollution. Hydrolytically degradable thermosets have emerged as a potentially sustainable alternative to traditional thermosets by affording networks that are inherently degradable in aqueous environments. This dissertation focuses on the development of hydrolytically degradable thermoset networks with tunable degradation behavior through the implementation of ketal-based crosslinks. Given …


Rhodium-Catalyzed Decarbonylation Of Aroyl Chlorides, Wiktoria M. Koza Jan 2022

Rhodium-Catalyzed Decarbonylation Of Aroyl Chlorides, Wiktoria M. Koza

Dissertations

The development of efficient strategies for the synthesis of aryl–halogen bonds is highly desirable due to the prevalence of these moieties in pharmaceuticals, agrochemicals, and organic synthesis. Although there are numerous applications of aryl chlorides in chemistry, an efficient strategy for the preparation of these molecules is underdeveloped. Transition metal-catalyzed decarbonylation provides an efficient and selective approach for aryl–halogen bond formation. There has been significant progress in the development of new decarbonylation strategies, particularly involving aldehydes for the synthesis of new carbon–hydrogen (C–H) bonds or for cross-coupling reactions. However, transition metal-catalyzed decarbonylation methods for carbon–halogen (C–X) bond formation have been …